scholarly journals The influence of rhizosphere soil fungal diversity and complex community structure on wheat root rot disease

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12601
Author(s):  
Xuejiang Zhang ◽  
Heyun Wang ◽  
Yawei Que ◽  
Dazhao Yu ◽  
Hua Wang

Wheat root rot disease due to soil-borne fungal pathogens leads to tremendous yield losses worth billions of dollars worldwide every year. It is very important to study the relationship between rhizosphere soil fungal diversity and wheat roots to understand the occurrence and development of wheat root rot disease. A significant difference in fungal diversity was observed in the rhizosphere soil of healthy and diseased wheat roots in the heading stage, but the trend was the opposite in the filling stage. The abundance of most genera with high richness decreased significantly from the heading to the filling stage in the diseased groups; the richness of approximately one-third of all genera remained unchanged, and only a few low-richness genera, such as Fusarium and Ceratobasidium, had a very significant increase from the heading to the filling stage. In the healthy groups, the abundance of most genera increased significantly from the heading to filling stage; the abundance of some genera did not change markedly, or the abundance of very few genera increased significantly. Physical and chemical soil indicators showed that low soil pH and density, increases in ammonium nitrogen, nitrate nitrogen and total nitrogen contributed to the occurrence of wheat root rot disease. Our results revealed that in the early stages of disease, highly diverse rhizosphere soil fungi and a complex community structure can easily cause wheat root rot disease. The existence of pathogenic fungi is a necessary condition for wheat root rot disease, but the richness of pathogenic fungi is not necessarily important. The increases in ammonium nitrogen, nitrate nitrogen and total nitrogen contributed to the occurrence of wheat root rot disease. Low soil pH and soil density are beneficial to the occurrence of wheat root rot disease.

2020 ◽  
Author(s):  
Xuejiang Zhang ◽  
Heyun Wang ◽  
Gavin Ash ◽  
Dazhao Yu ◽  
Hua Wang

Abstract Background: Wheat root rot disease due to soil-borne fungal pathogens leads to tremendous yield losses worth billions of dollars worldwide every year. It is very important to study the relationship between rhizosphere soil fungal diversity and wheat roots to understand the occurrence and development of wheat root rot disease. Results: A significant difference in fungal diversity was observed in the rhizosphere soil of healthy and diseased wheat roots in the heading stage, but the trend was the opposite in the filling stage. The abundance of most genera with high richness decreased significantly from the heading to the filling stage in the diseased groups; the richness of approximately one-third of all genera remained unchanged, and only a few low-richness genera, such as Fusarium and Ceratobasidium, had a very significant increase from the heading to the filling stage. In the healthy groups, the abundance of most genera increased significantly from the heading to the filling stage; the abundance of some genera did not change markedly, or the abundance of very few genera increased significantly. Physical and chemical soil indicators showed that low soil pH and density, increases in ammonium nitrogen, nitrate nitrogen and total nitrogen contributed to the occurrence of wheat root rot disease. Conclusions: Our results revealed that in the early stages of disease, highly diverse rhizosphere soil fungi and a complex community structure can easily cause wheat root rot disease. The existence of pathogenic fungi is a necessary condition for wheat root rot disease, but the richness of pathogenic fungi is not necessarily important. The increases in ammonium nitrogen, nitrate nitrogen and total nitrogen contributed to the occurrence of wheat root rot disease. Low soil pH and soil density are beneficial to the occurrence of wheat root rot disease. Keywords: Rhizosphere soil, Fungal diversity, Community structure, Wheat root rot disease


Author(s):  
Xuejiang Zhang ◽  
Heyun Wang ◽  
Gavin Ash ◽  
Dazhao Yu ◽  
Hua Wang

Background: Wheat root rot disease due to soil-borne fungal pathogens leads to tremendous yield losses worth billions of dollars worldwide every year. It is very important to study the relationship between rhizosphere fungal diversity and wheat roots to understand the occurrence and development of wheat root rot disease. Results: A significant difference in fungal diversity was observed between the diseased and healthy groups in the heading stage, but the trend was the opposite in the filling stage. The abundance of most genera with high richness decreased significantly from the heading to the filling stage in the diseased groups; the richness of approximately one-third of all genera remained unchanged, and only a few low-richness genera, such as Fusarium and Ceratobasidium, had a very significant increase from the heading to the filling stage. In the healthy groups, the abundance of most genera increased significantly from the heading to the filling stage; the abundance of some genera did not change markedly, or the abundance of very few genera increased significantly. Physical and chemical soil indicators showed that low soil pH and density, increases in ammonium nitrogen, nitrate nitrogen and total nitrogen contributed to the occurrence of wheat root rot disease. Conclusions: Our results revealed that in the early stages of disease, highly diverse rhizosphere fungi and a complex community structure can easily cause wheat root rot disease. The existence of pathogenic fungi is a necessary condition for wheat root rot disease, but the richness of pathogenic fungi is not necessarily important. The increases in ammonium nitrogen, nitrate nitrogen and total nitrogen contributed to the occurrence of wheat root rot disease. Low soil pH and soil density are beneficial to the occurrence of wheat root rot disease.


Author(s):  
M.M. Abdel-Kader ◽  
N.S. El-Mougy ◽  
M.S.A. Khalil ◽  
N.G. El-Gamal

Background: The most important wheat diseases that caused by soil-borne fungi are the root-rot disease. The current investigation conducted with evaluation the efficacy of some bioagents, Bacillus subtilis, Pseudomonas fluorescens, Azospirillum brasilense, Trichoderma harzianum, commercial bioagent (Planta guard) and chitosan against the causal pathogenic organisms of wheat root rot disease under greenhouse conditions. Methods: Wheat seedlings infected with root rot disease were subjected to the causal fungal isolation trails. In greenhouse, wheat grains were sown individually in pots containing artificially infested soil with the pathogenic fungi R. solani or F. graminearum. Furthermore, the tested bioagents and the fungicide Topsin-M 70 were applied to the infested soil before sowing. Result: The isolated fungi were R. solani or F. graminearum had proved their pathogenic ability to induce root rot disease of wheat. In pot experiment, all applied treatments affect root rot incidence of grown wheat seedlings in artificially infested soils with disease incidents. In infested soils with root rot incidents, bacterial bioagents reduced root rot incidence by 84.5-93.6% and 28.4- 35.3% 66.6, respectively and by 43.7% for T. harzianum. Moderate effect was obtained by chitosan and planta guard treatments in soil infested with either pathogenic fungi.


2019 ◽  
Vol 32 ◽  
pp. 320-336
Author(s):  
Yehya A. Salih ◽  
Noor M. Mansoor

This study aimed to investigate the effect of interaction between Trichoderma harzianum and the fungicide Topsin-M on root rot disease that infected okra in the field. Three fungi were isolated from the root of okra that infected with root rot disease: Fusarium solani, Rhizoctonia solani and Macrophomina phaseolina. The pathogenicity of these fungi was tested and found to be they cause root rot disease on okra, the disease severity was 41.7, 6.7 and 31.7% respectively. The laboratorial experiments showed that T. harzianum had a high antagonism ability with degrees of 1 and 2 against the pathogenic fungi M. phaseolina, F. solani and R. solani respectively. Also, it was found that the fungicide Topsin –M inhibited the growth of all pathogenic fungi with a percent of 100%, while it inhibited the bioagent fungus growth with a percent of 50.4 %, therefore it be recommended for the interaction experiments. The field results showed that using of bioagent T. harzianum and fungicide topsin-M significantly reduced the infection percentage and severity disease of the pathogenic fungi F. solani, R. solani and M. phaseolina to 65.3, 21.20, 13.20, 46.20, 25.70 and 18.20% respectively, compared to each pathogenic fungus alone which were 71.00, 60.20, 60.20, 66.80, 80.20 and 60.20% respectively. The interaction between the bioagent T. harzianum and topsin-M led to increase the plant height, fresh and dry weight of shoot and root systems and the fruit productivity of the examined okra plants .


2022 ◽  
Vol 12 ◽  
Author(s):  
Panpan Wang ◽  
Lifang Yang ◽  
Jialing Sun ◽  
Ye Yang ◽  
Yuan Qu ◽  
...  

Panax notoginseng (Burk.) F. H. Chen is a Chinese medicinal plant of the Araliaceae family used for the treatment of cardiovascular and cerebrovascular diseases in Asia. P. notoginseng is vulnerable to root rot disease, which reduces the yield of P. notoginseng. In this study, we analyzed the rhizosphere soil and root endophyte microbial communities of P. notoginseng from different geographical locations using high-throughput sequencing. Our results revealed that the P. notoginseng rhizosphere soil microbial community was more diverse than the root endophyte community. Rhodopseudomonas, Actinoplanes, Burkholderia, and Variovorax paradoxus can help P. notoginseng resist the invasion of root rot disease. Ilyonectria mors-panacis, Pseudomonas fluorescens, and Pseudopyrenochaeta lycopersici are pathogenic bacteria of P. notoginseng. The upregulation of amino acid transport and metabolism in the soil would help to resist pathogens and improve the resistance of P. notoginseng. The ABC transporter and gene modulating resistance genes can improve the disease resistance of P. notoginseng, and the increase in the number of GTs (glycosyltransferases) and GHs (glycoside hydrolases) families may be a molecular manifestation of P. notoginseng root rot. In addition, the complete genomes of two Flavobacteriaceae species and one Bacteroides species were obtained. This study demonstrated the microbial and functional diversity in the rhizosphere and root microbial community of P. notoginseng and provided useful information for a better understanding of the microbial community in P. notoginseng root rot. Our results provide insights into the molecular mechanism underlying P. notoginseng root rot and other plant rhizosphere microbial communities.


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Farid Abd-El-Kareem ◽  
Ibrahim E. Elshahawy ◽  
Mahfouz M. M. Abd-Elgawad

Abstract Background Economics and human safety to avoid health risks caused by fungicides are materializing new era of biological pest control. Trichoderma species ranked high among other agents to control complex black root rot disease of strawberry caused by Fusarium solani, Rhizoctonia solani, and Pythium sp. Our study aimed to document the efficacy of local strains representing T. harzianum, T. viride, T. virinis, and T. koningii against such a disease. Materials/methods These strains were cultured separately on potato dextrose broth medium to test their inhibitory effect against strawberry black root rot in vitro and in vivo. Strawberry growth and yield were also assessed relative to the untreated check and the fungicide Actamyl. Activity of peroxidase and chitinase were measured in plant leaves using spectrophotometer. Results Each of the antagonistic fungal strains significantly reduced growth area of all pathogenic fungi collectively causing the disease. Trichoderma harzianum, T. viride, and T. koningii reduced the growth area more than 90.6% for all tested pathogenic fungi. Each species significantly reduced disease incidence and severity under field conditions. The highest reduction in the disease incidence and severity, 83.3 and 88.5% respectively, was attained by mixture of the four species. This mixture increased the strawberry fresh and dry weight by 83.3 and 176.9%, respectively, and the yield by 117.1%. All Trichoderma species tested significantly increased the activity of two plant defense-related enzymes of strawberry plants against the pathogens. Their mixture attained the highest increase of peroxidase and chitinase activity by 150 and 160.9%, respectively. Conclusions While the fungal mixture could considerably increase the strawberry fresh and dry weight as well as the yield, it suppressed the incidence and severity of the disease. So, integrated pest management in ways that make these biocontrol agents complementary or superior to chemical fungicides should further be examined against this disease.


2015 ◽  
Vol 10 (50) ◽  
pp. 4538-4542 ◽  
Author(s):  
Ngobisa A I C Nyaka ◽  
Djidjou P Kammegne ◽  
Ntsefong Godswill Ntsomboh ◽  
M Mbenoun ◽  
Simon Zok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document