scholarly journals The impact of feature selection on one and two-class classification performance for plant microRNAs

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2135 ◽  
Author(s):  
Waleed Khalifa ◽  
Malik Yousef ◽  
Müşerref Duygu Saçar Demirci ◽  
Jens Allmer

MicroRNAs (miRNAs) are short nucleotide sequences that form a typical hairpin structure which is recognized by a complex enzyme machinery. It ultimately leads to the incorporation of 18–24 nt long mature miRNAs into RISC where they act as recognition keys to aid in regulation of target mRNAs. It is involved to determine miRNAs experimentally and, therefore, machine learning is used to complement such endeavors. The success of machine learning mostly depends on proper input data and appropriate features for parameterization of the data. Although, in general, two-class classification (TCC) is used in the field; because negative examples are hard to come by, one-class classification (OCC) has been tried for pre-miRNA detection. Since both positive and negative examples are currently somewhat limited, feature selection can prove to be vital for furthering the field of pre-miRNA detection. In this study, we compare the performance of OCC and TCC using eight feature selection methods and seven different plant species providing positive pre-miRNA examples. Feature selection was very successful for OCC where the best feature selection method achieved an average accuracy of 95.6%, thereby being ∼29% better than the worst method which achieved 66.9% accuracy. While the performance is comparable to TCC, which performs up to 3% better than OCC, TCC is much less affected by feature selection and its largest performance gap is ∼13% which only occurs for two of the feature selection methodologies. We conclude that feature selection is crucially important for OCC and that it can perform on parwith TCC given the proper set of features.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Malik Yousef ◽  
Müşerref Duygu Saçar Demirci ◽  
Waleed Khalifa ◽  
Jens Allmer

MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection.


2014 ◽  
Vol 631-632 ◽  
pp. 1219-1223
Author(s):  
Jia Hao Chen ◽  
Jian Hua Wu

With the rapid development of Internet and occurrence of social media services, many users are becoming the creators of social information. However, the normal manual work can't deal with a large number of subjective messages. As a new kind of social media service, micro blog has been widely accepted and can be used for sentiment analysis. This paper compared performances of three machine learning methods on sentiment analysis of Chinese micro blog. We also proposed an improved feature selection method that increases the accuracy of classification. Experiment results show that SVM is closed to Naïve Bayes and they are better than logistic regression in most cases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miseon Shim ◽  
Seung-Hwan Lee ◽  
Han-Jeong Hwang

AbstractIn recent years, machine learning techniques have been frequently applied to uncovering neuropsychiatric biomarkers with the aim of accurately diagnosing neuropsychiatric diseases and predicting treatment prognosis. However, many studies did not perform cross validation (CV) when using machine learning techniques, or others performed CV in an incorrect manner, leading to significantly biased results due to overfitting problem. The aim of this study is to investigate the impact of CV on the prediction performance of neuropsychiatric biomarkers, in particular, for feature selection performed with high-dimensional features. To this end, we evaluated prediction performances using both simulation data and actual electroencephalography (EEG) data. The overall prediction accuracies of the feature selection method performed outside of CV were considerably higher than those of the feature selection method performed within CV for both the simulation and actual EEG data. The differences between the prediction accuracies of the two feature selection approaches can be thought of as the amount of overfitting due to selection bias. Our results indicate the importance of correctly using CV to avoid biased results of prediction performance of neuropsychiatric biomarkers.


2021 ◽  
Vol 15 ◽  
Author(s):  
Domenico Messina ◽  
Pasquale Borrelli ◽  
Paolo Russo ◽  
Marco Salvatore ◽  
Marco Aiello

Voxel-wise group analysis is presented as a novel feature selection (FS) technique for a deep learning (DL) approach to brain imaging data classification. The method, based on a voxel-wise two-sample t-test and denoted as t-masking, is integrated into the learning procedure as a data-driven FS strategy. t-Masking has been introduced in a convolutional neural network (CNN) for the test bench of binary classification of very-mild Alzheimer’s disease vs. normal control, using a structural magnetic resonance imaging dataset of 180 subjects. To better characterize the t-masking impact on CNN classification performance, six different experimental configurations were designed. Moreover, the performances of the presented FS method were compared to those of similar machine learning (ML) models that relied on different FS approaches. Overall, our results show an enhancement of about 6% in performance when t-masking was applied. Moreover, the reported performance enhancement was higher with respect to similar FS-based ML models. In addition, evaluation of the impact of t-masking on various selection rates has been provided, serving as a useful characterization for future insights. The proposed approach is also highly generalizable to other DL architectures, neuroimaging modalities, and brain pathologies.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1226
Author(s):  
Saeed Najafi-Zangeneh ◽  
Naser Shams-Gharneh ◽  
Ali Arjomandi-Nezhad ◽  
Sarfaraz Hashemkhani Zolfani

Companies always seek ways to make their professional employees stay with them to reduce extra recruiting and training costs. Predicting whether a particular employee may leave or not will help the company to make preventive decisions. Unlike physical systems, human resource problems cannot be described by a scientific-analytical formula. Therefore, machine learning approaches are the best tools for this aim. This paper presents a three-stage (pre-processing, processing, post-processing) framework for attrition prediction. An IBM HR dataset is chosen as the case study. Since there are several features in the dataset, the “max-out” feature selection method is proposed for dimension reduction in the pre-processing stage. This method is implemented for the IBM HR dataset. The coefficient of each feature in the logistic regression model shows the importance of the feature in attrition prediction. The results show improvement in the F1-score performance measure due to the “max-out” feature selection method. Finally, the validity of parameters is checked by training the model for multiple bootstrap datasets. Then, the average and standard deviation of parameters are analyzed to check the confidence value of the model’s parameters and their stability. The small standard deviation of parameters indicates that the model is stable and is more likely to generalize well.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii158-ii158
Author(s):  
Nicholas Nuechterlein ◽  
Beibin Li ◽  
James Fink ◽  
David Haynor ◽  
Eric Holland ◽  
...  

Abstract BACKGROUND Previously, we have shown that combined whole-exome sequencing (WES) and genome-wide somatic copy number alteration (SCNA) information can separate IDH1/2-wildtype glioblastoma into two prognostic molecular subtypes (Group 1 and Group 2) and that these subtypes cannot be distinguished by epigenetic or clinical features. However, the potential for radiographic features to discriminate between these molecular subtypes has not been established. METHODS Radiogenomic features (n=35,400) were extracted from 46 multiparametric, pre-operative magnetic resonance imaging (MRI) of IDH1/2-wildtype glioblastoma patients from The Cancer Imaging Archive, all of whom have corresponding WES and SCNA data in The Cancer Genome Atlas. We developed a novel feature selection method that leverages the structure of extracted radiogenomic MRI features to mitigate the dimensionality challenge posed by the disparity between the number of features and patients in our cohort. Seven traditional machine learning classifiers were trained to distinguish Group 1 versus Group 2 using our feature selection method. Our feature selection was compared to lasso feature selection, recursive feature elimination, and variance thresholding. RESULTS We are able to classify Group 1 versus Group 2 glioblastomas with a cross-validated area under the curve (AUC) score of 0.82 using ridge logistic regression and our proposed feature selection method, which reduces the size of our feature set from 35,400 to 288. An interrogation of the selected features suggests that features describing contours in the T2 abnormality region on the FLAIR MRI modality may best distinguish these two groups from one another. CONCLUSIONS We successfully trained a machine learning model that allows for relevant targeted feature extraction from standard MRI to accurately predict molecularly-defined risk-stratifying IDH1/2-wildtype glioblastoma patient groups. This algorithm may be applied to future prospective studies to assess the utility of MRI as a surrogate for costly prognostic genomic studies.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Nicholas Nuechterlein ◽  
Beibin Li ◽  
Abdullah Feroze ◽  
Eric C Holland ◽  
Linda Shapiro ◽  
...  

Abstract Background Combined whole-exome sequencing (WES) and somatic copy number alteration (SCNA) information can separate isocitrate dehydrogenase (IDH)1/2-wildtype glioblastoma into two prognostic molecular subtypes, which cannot be distinguished by epigenetic or clinical features. The potential for radiographic features to discriminate between these molecular subtypes has yet to be established. Methods Radiologic features (n = 35 340) were extracted from 46 multisequence, pre-operative magnetic resonance imaging (MRI) scans of IDH1/2-wildtype glioblastoma patients from The Cancer Imaging Archive (TCIA), all of whom have corresponding WES/SCNA data. We developed a novel feature selection method that leverages the structure of extracted MRI features to mitigate the dimensionality challenge posed by the disparity between a large number of features and the limited patients in our cohort. Six traditional machine learning classifiers were trained to distinguish molecular subtypes using our feature selection method, which was compared to least absolute shrinkage and selection operator (LASSO) feature selection, recursive feature elimination, and variance thresholding. Results We were able to classify glioblastomas into two prognostic subgroups with a cross-validated area under the curve score of 0.80 (±0.03) using ridge logistic regression on the 15-dimensional principle component analysis (PCA) embedding of the features selected by our novel feature selection method. An interrogation of the selected features suggested that features describing contours in the T2 signal abnormality region on the T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI sequence may best distinguish these two groups from one another. Conclusions We successfully trained a machine learning model that allows for relevant targeted feature extraction from standard MRI to accurately predict molecularly-defined risk-stratifying IDH1/2-wildtype glioblastoma patient groups.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarv Priya ◽  
Tanya Aggarwal ◽  
Caitlin Ward ◽  
Girish Bathla ◽  
Mathews Jacob ◽  
...  

AbstractSide experiments are performed on radiomics models to improve their reproducibility. We measure the impact of myocardial masks, radiomic side experiments and data augmentation for information transfer (DAFIT) approach to differentiate patients with and without pulmonary hypertension (PH) using cardiac MRI (CMRI) derived radiomics. Feature extraction was performed from the left ventricle (LV) and right ventricle (RV) myocardial masks using CMRI in 82 patients (42 PH and 40 controls). Various side study experiments were evaluated: Original data without and with intraclass correlation (ICC) feature-filtering and DAFIT approach (without and with ICC feature-filtering). Multiple machine learning and feature selection strategies were evaluated. Primary analysis included all PH patients with subgroup analysis including PH patients with preserved LVEF (≥ 50%). For both primary and subgroup analysis, DAFIT approach without feature-filtering was the highest performer (AUC 0.957–0.958). ICC approaches showed poor performance compared to DAFIT approach. The performance of combined LV and RV masks was superior to individual masks alone. There was variation in top performing models across all approaches (AUC 0.862–0.958). DAFIT approach with features from combined LV and RV masks provide superior performance with poor performance of feature filtering approaches. Model performance varies based upon the feature selection and model combination.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Go-Eun Yu ◽  
Younhee Shin ◽  
Sathiyamoorthy Subramaniyam ◽  
Sang-Ho Kang ◽  
Si-Myung Lee ◽  
...  

AbstractBellflower is an edible ornamental gardening plant in Asia. For predicting the flower color in bellflower plants, a transcriptome-wide approach based on machine learning, transcriptome, and genotyping chip analyses was used to identify SNP markers. Six machine learning methods were deployed to explore the classification potential of the selected SNPs as features in two datasets, namely training (60 RNA-Seq samples) and validation (480 Fluidigm chip samples). SNP selection was performed in sequential order. Firstly, 96 SNPs were selected from the transcriptome-wide SNPs using the principal compound analysis (PCA). Then, 9 among 96 SNPs were later identified using the Random forest based feature selection method from the Fluidigm chip dataset. Among six machines, the random forest (RF) model produced higher classification performance than the other models. The 9 SNP marker candidates selected for classifying the flower color classification were verified using the genomic DNA PCR with Sanger sequencing. Our results suggest that this methodology could be used for future selection of breeding traits even though the plant accessions are highly heterogeneous.


Sign in / Sign up

Export Citation Format

Share Document