scholarly journals Ecophylogeny of the endospheric root fungal microbiome of co-occurring Agrostis stolonifera

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3454 ◽  
Author(s):  
Amandine Lê Van ◽  
Achim Quaiser ◽  
Marie Duhamel ◽  
Sophie Michon-Coudouel ◽  
Alexis Dufresne ◽  
...  

Background Within the root endosphere, fungi are known to be important for plant nutrition and resistance to stresses. However, description and understanding of the rules governing community assembly in the fungal fraction of the plant microbiome remains scarce. Methods We used an innovative DNA- and RNA-based analysis of co-extracted nucleic acids to reveal the complexity of the fungal community colonizing the roots of an Agrostis stolonifera population. The normalized RNA/DNA ratio, designated the ‘mean expression ratio’, was used as a functional trait proxy. The link between this trait and phylogenetic relatedness was measured using the Blomberg’s K statistic. Results Fungal communities were highly diverse. Only ∼1.5% of the 635 OTUs detected were shared by all individuals, however these accounted for 33% of the sequence number. The endophytic fungal communities in plant roots exhibit phylogenetic clustering that can be explained by a plant host effect acting as environmental filter. The ‘mean expression ratio’ displayed significant but divergent phylogenetic signals between fungal phyla. Discussion These results suggest that environmental filtering by the host plant favours the co-existence of related and similar OTUs within the Basidiomycota community assembly, whereas the Ascomycota and Glomeromycota communities seem to be impacted by competitive interactions which promote the co-existence of phylogenetically related but ecologically dissimilar OTUs.

2021 ◽  
Vol 8 ◽  
Author(s):  
Lauren Sutton ◽  
Franz J. Mueter ◽  
Bodil A. Bluhm ◽  
Katrin Iken

Community assembly theory states that species assemble non-randomly as a result of dispersal limitation, biotic interactions, and environmental filtering. Strong environmental filtering likely leads to local assemblages that are similar in their functional trait composition (high trait convergence) while functional trait composition will be less similar (high trait divergence) under weaker environmental filters. We used two Arctic shelves as case studies to examine the relationship between functional community assembly and environmental filtering using the geographically close but functionally and environmentally dissimilar epibenthic communities on the Chukchi and Beaufort Sea shelves. Environmental drivers were compared to functional trait composition and to trait convergence within each shelf. Functional composition in the Chukchi Sea was more strongly correlated with environmental gradients compared to the Beaufort Sea, as shown by a combination of RLQ and fourth corner analyses and community-weighted mean redundancy analyses. In the Chukchi Sea, epibenthic functional composition, particularly body size, reproductive strategy, and several behavioral traits (i.e., feeding habit, living habit, movement), was most strongly related to gradients in percent mud and temperature while body size and larval development were most strongly related to a depth gradient in the Beaufort Sea. The stronger environmental filter in the Chukchi Sea also supported the hypothesized relationship with higher trait convergence, although this relationship was only evident at one end of the observed environmental gradient. Strong environmental filtering generally provides a challenge for biota and can be a barrier for invading species, a growing concern for the Chukchi Sea shelf communities under warming conditions. Weaker environmental filtering, such as on the Beaufort Sea shelf, generally leads to communities that are more structured by biotic interactions, and possibly representing partitioning of resources among species from intermediate disturbance levels. We provide evidence that environmental filtering can structure functional community composition, providing a baseline of how community function could be affected by stressors such as changes in environmental conditions or increased anthropogenic disturbance.


Author(s):  
Mohammad Bahram ◽  
Kati Kings ◽  
Mari Pent ◽  
Sergei Polme ◽  
Daniyal Gohar ◽  
...  

Bacterial and fungal endophytes form diverse communities and contribute to the performance and health of their host plants. Recent evidence suggests that both host related factors and environmental conditions determine the community structure of plant endophytes. Yet, we know little about their distribution patterns, and underlying community assembly mechanisms across plant compartments. Here we analysed the structure of bacterial and fungal communities associated with tree compartments as well as their underlying soils across 12 tree individuals in boreal forests. We found that the structure of bacterial and fungal communities depends more strongly on the vertical location of tree compartments rather than the locality, species, and individuals of host trees. Microbial communities showed much stronger host specificity in aboveground than belowground compartments. While having lower compartment community variability compared to fungi, bacterial communities were markedly more distinct between below- and aboveground components but not between hosts, reflecting the greater importance of environmental filtering rather than dispersal limitation and host identity in their community assembly. Our data suggest that spatial distance from soil as a major microbiome source contributes to the formation of microbiomes in plants, and that bacterial and fungal communities may follow contrasting assembly processes.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Pengfa Li ◽  
Weitao Li ◽  
Alex J. Dumbrell ◽  
Ming Liu ◽  
Guilong Li ◽  
...  

ABSTRACT Fungi underpin almost all terrestrial ecosystem functions, yet our understanding of their community ecology lags far behind that of other organisms. Here, red paddy soils in subtropical China were collected across a soil depth profile, comprising 0-to-10-cm- (0-10cm-), 10-20cm-, and 20-40cm-deep layers. Using Illumina MiSeq amplicon sequencing of the internal transcribed spacer (ITS) region, distance-decay relationships (DDRs), and ecological models, fungal assemblages and their spatial patterns were investigated from each soil depth. We observed significant spatial variation in fungal communities and found that environmental heterogeneity decreased with soil depth, while spatial variation in fungal communities showed the opposite trend. DDRs occurred only in 0-10cm- and 10-20cm-deep soil layers, not in the 20-40cm layer. Our analyses revealed that the fungal community assembly in the 0-10cm layer was primarily governed by environmental filtering and a high dispersal rate, while in the deeper layer (20-40cm), it was primarily governed by dispersal limitation with minimal environmental filtering. Both environmental filtering and dispersal limitation controlled fungal community assembly in the 10-20cm layer, with dispersal limitation playing the major role. Results demonstrate the decreasing importance of environmental filtering and an increase in the importance of dispersal limitation in structuring fungal communities from shallower to deeper soils. Effectively, “everything is everywhere, but the environment selects,” although only in shallower soils that are easily accessible to dispersive fungal propagules. This work highlights that perceived drivers of fungal community assembly are dependent on sampling depth, suggesting that caution is required when interpreting diversity patterns from samples that integrate across depths. IMPORTANCE In this work, Illumina MiSeq amplicon sequencing of the ITS region was used to investigate the spatial variation and assembly mechanisms of fungal communities from different soil layers across paddy fields in subtropical China, and the results demonstrate the decreasing importance of environmental filtering and an increase in the importance of dispersal limitation in structuring fungal communities from shallower to deeper soils. Therefore, the results of this study highlight that perceived drivers of fungal community assembly are dependent on sampling depth and suggest that caution is required when interpreting diversity patterns from samples that integrate across depths. This is the first study focusing on assemblages of fungal communities in different soil layers on a relatively large scale, and we thus believe that this study is of great importance to researchers and readers in microbial ecology, especially in microbial biogeography, because the results can provide sampling guidance in future studies of microbial biogeography.


2021 ◽  
Author(s):  
Melissa Johnson

Abstract Tropical rainforest communities are often characterized by a small number of species-rich genera that contribute disproportionately to the alpha diversity in these habitats. In the Pacific Basin there are nearly 200 species of Cyrtandra, most of which are white-flowered woody shrubs that are single-island endemics. Within these island communities, multiple Cyrtandra species are commonly observed to occur sympatrically in wet forest understories, forming swarms of what appear to be ecologically similar taxa. The aim of this study was to determine if communities of these plants are randomly assembled with respect to phylogenetic relatedness and traits that are ecologically relevant. Using a combination of ten functional traits and a well-resolved species phylogeny, I examined community assembly within 34 species of Cyrtandra across three Pacific archipelagoes. Coexisting species were generally found to be more closely related and more phenotypically similar than would be expected by chance. This pattern was observed at both broad (island communities) and fine (site communities) spatial scales. The retention of phylogenetic signal in floral traits and the strong influence of these traits on the observed degree of phylogenetic clustering may indicate that pollinators act as a biotic filter for closely related species of Cyrtandra. In contrast, the absence of phylogenetic signal in most leaf traits, coupled with the lower contribution of these traits to niche clustering, suggests that environmental filtering along this trait axis is minimal in the observed communities. This study supports the theory that plant communities are not randomly assembled, and instead, that niche-based processes structure biodiversity at broad and fine spatial scales in diverse congeneric species assemblages.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2016 ◽  
Vol 13 (10) ◽  
pp. 2901-2911 ◽  
Author(s):  
Torsten Hauffe ◽  
Christian Albrecht ◽  
Thomas Wilke

Abstract. The Balkan Lake Ohrid is the oldest and most diverse freshwater lacustrine system in Europe. However, it remains unclear whether species community composition, as well as the diversification of its endemic taxa, is mainly driven by dispersal limitation, environmental filtering, or species interaction. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics, as provided by the unifying framework of the “metacommunity speciation model”.The current study used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process-based metacommunity analyses. Specifically, the study aimed (1) to identifying the relative importance of the three community assembly processes and (2) to test whether the importance of these individual processes changes gradually with lake depth or discontinuously with eco-zone shifts.Based on automated eco-zone detection and process-specific simulation steps, we demonstrated that dispersal limitation had the strongest influence on gastropod community composition. However, it was not the exclusive assembly process, but acted together with the other two processes – environmental filtering and species interaction. The relative importance of the community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter.This suggests that environmental characteristics have a pronounced effect on shaping gastropod communities via assembly processes. Moreover, the study corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community composition) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental filtering and biotic interaction also suggests a small but significant influence of ecological speciation. These findings contribute to the main goal of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) deep drilling initiative – inferring the drivers of biotic evolution – and might provide an integrative perspective on biological and limnological dynamics in ancient Lake Ohrid.


2021 ◽  
Author(s):  
Emily K. Bechtold ◽  
Stephanie Ryan ◽  
Sarah E. Moughan ◽  
Ravi Ranjan ◽  
Klaus Nüsslein

Grasslands represent a critical ecosystem important for global food production, soil carbon storage, and water regulation. Current intensification and expansion practices add to the degradation of grasslands and dramatically increase greenhouse gas emissions and pollution. Thus, new ways to sustain and improve their productivity are needed. Research efforts focus on the plant-leaf microbiome, or phyllosphere, because its microbial members impact ecosystem function by influencing pathogen resistance, plant hormone production, and nutrient availability through processes including nitrogen fixation. However, little is known about grassland phyllospheres and their response to environmental stress. In this study, globally dominant temperate and tropical forage grass species were grown in a greenhouse under current climate conditions and drought conditions that mimic future climate predictions to understand if (i) plant host taxa influence microbial community assembly, (ii) microbial communities respond to drought stress, and (iii) phyllosphere community changes correlate to changes in plant host traits and stress-response strategies. Community analysis using high resolution sequencing revealed Gammaproteobacteria as the dominant bacterial class, which increased under severe drought stress on both temperate and tropical grasses while overall bacterial community diversity declined. Bacterial community diversity, structure, and response to drought were significantly different between grass species. This community dependence on plant host species correlated with differences in grass species traits, which became more defined under drought stress conditions, suggesting symbiotic evolutionary relationships between plant hosts and their associated microbial community. Further understanding these strategies and the functions microbes provide to plants will help us utilize microbes to promote agricultural and ecosystem productivity in the future.


2019 ◽  
Author(s):  
Pierre Denelle ◽  
Cyrille Violle ◽  
François Munoz

AbstractUnderstanding the imprint of environmental filtering on community assembly along environmental gradients is a key objective of trait-gradient analyses. Depending on local constraints, this filtering generally entails that species departing from an optimum trait value have lower abundances in the community. The Community-Weighted Mean (CWM) and Variance (CWV) of trait values are then expected to depict the optimum and intensity of filtering, respectively. However, the trait distribution within the regional species pool and its limits can also affect local CWM and CWV values apart from the effect of environmental filtering. The regional trait range limits are more likely to be reached in communities at the extremes of environmental gradients. Analogous to the mid-domain effect in biogeography, decreasing CWV values in extreme environments can then represent the influence of regional trait range limits rather than stronger filtering in the local environment. We name this effect the “Trait-Gradient Boundary Effect” (TGBE). First, we use a community assembly framework to build simulated communities along a gradient from a species pool and environmental filtering with either constant or varying intensity while accounting for immigration processes. We demonstrate the significant influence of TGBE, in parallel to environmental filtering, on CWM and CWV at the extremes of the environmental gradient. We provide a statistical tool based on Approximate Bayesian Computation to decipher the respective influence of local environmental filtering and regional trait range limits. Second, as a case study, we reanalyze the functional composition of alpine plant communities distributed along a gradient of snow cover duration. We show that leaf trait convergence found in communities at the extremes of the gradient reflect an influence of trait range limits rather than stronger environmental filtering. These findings challenge correlative trait-environment relationships and call for more explicitly identifying the mechanisms responsible of trait convergence/divergence along environmental gradients.


Author(s):  
Hai-Yang Zhang ◽  
Xiaotao Lü ◽  
cunzheng wei ◽  
Jeff Powell ◽  
Xiaobo Wang ◽  
...  

Elucidating mechanisms underlying community assembly and biodiversity patterns is central to ecology and evolution. Genome size (GS, i.e. nuclear DNA content) determines species’ capacity to tolerate environmental stress or to exploit new environments and therefore potentially drive community assembly. However, its role in driving β-diversity (i.e., the site-to-site variability in species composition) remains unclear. We measured GS for 169 plant species and investigated their occurrences within plant communities across 52 sites spanning a 3200-km transect in the temperate grasslands of China. We found environmental factors showed larger effects on β-diversity of large-GS than that of small-GS species. Community weighted mean GS increased with mean annual precipitation, soil total nitrogen and phosphorus concentrations, but decreased with mean annual temperature, suggesting a negative selection against species with large GS in resources-limited or warmer climates. These findings highlight the roles for GS in driving community assembly and predicting species responses to climate change.


2021 ◽  
Author(s):  
◽  
Carolann Schack

<p>Modularity is a fundamental concept in biology. Most taxa within the colonial invertebrate phylum Bryozoa have achieved division of labor through the development of specialized modules (polymorphs), and this group is perhaps the most outstanding exemplar of the phenomenon. This thesis addresses several gaps in the literature concerning the morphology, ecology, energetics, and evolvability of bryozoan polymorphism.  It has been over 40 years since the last review of bryozoan polymorphism, and here I provide a comprehensive update that describes the diversity, morphology, and function of bryozoan polymorphs and the significance of modularity to their evolutionary success. While the degree of module compartmentalization is important for the evolution of polymorphism in bryozoans, this does not appear to be the case for other colonial invertebrates.  To facilitate data collection, I developed a classification system for polymorphism in cheilostome bryozoans. While classification systems exist for bryozoan colony form, the system presented here is the first developed for polymorphism. This system is fully illustrated and non-hierarchical, enabling swift classification and statistical comparisons at many levels of detail.  Understanding community assembly is a key goal in community ecology, but previous work on bryozoan communities has focused on colony form rather than polymorphism. Environmental filtering influences community assembly by excluding ill-adapted species, resulting in communities with similar functional traits. An RLQ (a four-way ordination) analysis incorporating spatial data was run on a dataset of 642 species of cheilostomes from 779 New Zealand sites, to investigate environmental filtering of colony form and zooid polymorphism. This revealed environmental filtering of colony form: encrusting-cemented taxa were predominant in shallow environments with hard substrata (200 m). Furthermore, erect taxa found in shallow environments with high current speeds were typically jointed. Surprisingly, polymorphism also followed environmental gradients. External ovicells (brood chambers) were more common in deeper, low oxygen water than immersed and internal ovicells. This may reflect the oxygen needs of the embryo or increased predation intensity in shallow environments. Bryozoans with costae (rib-like spines) tended to be found in deeper water as well, while bryozoans with calcified frontal shields were found in shallow environments with a higher concentration of CaCO₃. Avicularia (defensive grasping structures) were not related to environmental conditions, and changes in pivot bar structure with depth likely represent a phylogenetic signal. Factors influencing community assembly were somewhat partitioned by levels of organization, since colony form responds to environmental conditions, while the effects of evolutionary history, predation, and environmental conditions were not well-separated for zooid-level morphology. Finally, rootlets may have been a key innovation that allowed cementing taxa to escape hard substrata, potentially contributing to the cheilostome radiation.  Despite the diversity of life on earth, many morphologies have not been achieved. Morphology can be limited by a variety of constraints (developmental, historical, biomechanical) and comparing the distribution of realized forms in a theoretical form-space (i.e. “morphospace”) can highlight which constraints are at play and potential functions. If traits cluster around biomechanical optima, then morphology may be shaped by strong selective pressures. In contrast, a well-explored (filled) morphospace suggests weak constraints and high morphological evolvability. Here, constraints on morphospace exploration were examined for 125 cheilostome bryozoan species from New Zealand. The mandible morphospaces for avicularia (beak-like polymorphs) were visualized using Coordinate-Point Extended Eigenshape analysis. Mechanical advantage, moment of inertia, drag, peak force, and rotational work required to close the mandible were calculated for theoretical (n=47) and real mandibles (n=224) to identify biomechanical optima. The volume and surface of area of the parcel of water passed through by the closing mandible (referred to as the “domain”) was also calculated. The theoretical morphospace of avicularia is well-explored, suggesting they are highly evolvable and have relaxed developmental constraints. However, there may be constraints within lineages. A well-developed fulcrum (complete pivot bar) may be an evolutionary pre/corequisite to evolving mandibles with extreme moments of inertia such as setose and highly spathulate forms. The most common mandible shape, triangular, represents a trade-off between maximizing domain size, minimizing energetic cost (force and construction material), and minimizing the potential for breakage. This suggests that they are well suited for catching epibionts, representing the first empirical evidence for avicularian function. Tendon length and mechanical advantage are limited by tendon width, which itself is constrained by the base width of the mandible. This explains the low mechanical advantage of setose mandibles and suggests that they are unable to grasp epibionts. The calories required to close the mandible of an avicularium (estimated from rotational work) are quite small (1.24 x 10⁻¹⁶ to 8.82 x 10⁻¹¹ cal).  Overall, this thesis highlights the complexity of bryozoan polymorphism and suggests cheilostome avicularia could provide a unique evolutionary system to study due to their apparent lack of strong developmental constraints. Future studies into the ecology of polymorphism should focus on the degree of investment (polymorph abundance within a colony) rather than presence or absence.</p>


Sign in / Sign up

Export Citation Format

Share Document