scholarly journals Protected areas’ effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes Range

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5222 ◽  
Author(s):  
Carlos Riquelme ◽  
Sergio A. Estay ◽  
Rodrigo López ◽  
Hernán Pastore ◽  
Mauricio Soto-Gamboa ◽  
...  

BackgroundClimate change is one of the greatest threats to biodiversity, pushing species to shift their distribution ranges and making existing protected areas inadequate. Estimating species distribution and potential modifications under climate change are then necessary for adjusting conservation and management plans; this is especially true for endangered species. An example of this issue is the huemul (Hippocamelus bisulcus), an endemic endangered deer from the southern Andes Range, with less than 2,000 individuals. It is distributed in fragmented populations along a 2,000 km latitudinal gradient, in Chile and Argentina. Several threats have reduced its distribution to <50% of its former range.MethodsTo estimate its potential distribution and protected areas effectiveness, we constructed a species distribution model using 2,813 huemul presence points throughout its whole distribution range, together with 19 bioclimatic layers and altitude information from Worldclim. Its current distribution was projected for years 2050 and 2070 using five different Global Climate Models estimated for scenarios representing two carbon Representative Concentration Routes (RCP)—RCP4.5 and RCP6.0.ResultsBased on current huemul habitat variables, we estimated 91,617 km2of suitable habitat. In future scenarios of climate change, there was a loss of suitable habitat due to altitudinal and latitudinal variation. Future projections showed a decrease of 59.86–60.26% for the year 2050 and 58.57–64.34% for the year 2070 according to RCP4.5 and RCP6.0, respectively. Protected areas only covered only 36.18% of the present distribution, 38.57–34.94% for the year 2050 and 30.79–31.94% for 2070 under climate change scenarios.DiscussionModeling current and future huemul distributions should allow the establishment of priority conservation areas in which to focus efforts and funds, especially areas without official protection. In this way, we can improve management in areas heavily affected by climate change to help ensure the persistence of this deer and other species under similar circumstances worldwide.

2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Wolfgang Falk ◽  
Nils Hempelmann

Climate is the main environmental driver determining the spatial distribution of most tree species at the continental scale. We investigated the distribution change of European beech and Norway spruce due to climate change. We applied a species distribution model (SDM), driven by an ensemble of 21 regional climate models in order to study the shift of the favourability distribution of these species. SDMs were parameterized for 1971–2000, as well as 2021–2050 and 2071–2100 using the SRES scenario A1B and three physiological meaningful climate variables. Growing degree sum and precipitation sum were calculated for the growing season on a basis of daily data. Results show a general north-eastern and altitudinal shift in climatological favourability for both species, although the shift is more marked for spruce. The gain of new favourable sites in the north or in the Alps is stronger for beech compared to spruce. Uncertainty is expressed as the variance of the averaged maps and with a density function. Uncertainty in species distribution increases over time. This study demonstrates the importance of data ensembles and shows how to deal with different outcomes in order to improve impact studies by showing uncertainty of the resulting maps.


Author(s):  
Xinyu Liu ◽  
Xiaolu Han ◽  
Zhiqiang Han

Species have shown their habital variations in responding to climate change, especially during the spring and summer spawning seasons. The species distribution model (SDM) is considered the most favorable tool to study the potential effects of climate change on species distribution. Therefore, we developed the ensemble SDM to predict the changes in species distribution of Portunus trituberculatus among different seasons in 2050 and 2100 under the climate scenarios RCP4.5 and RCP8.5. The results of SDM indicate that the distribution of this species will move northward and have obviouse seasonal variations. Meanwhile, the suitable habitat for the species will be significantly reduced in summer, with loses rates ranging from 45.23% (RCP4.5) to 88.26% (RCP.8.5) by 2100s. Habitat reduction will mainly occur in the East China Sea and southern part of the Yellow Sea, while there will be a small increase in the northern Bohai Sea. These findings will be important to manage the ecosystem and fishery, provide an information forecast of this species in the future, and maintain species diversity if the seawater temperature rises.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 978
Author(s):  
Taoufik Saleh Ksiksi ◽  
Remya K. ◽  
Mohamed T. Mousa ◽  
Shima K. Al-Badi ◽  
Salama K. Al Kaabi ◽  
...  

Background: The impact of climate change on selected plant species from the hyper-arid landscape of United Arab Emirates (UAE) was assessed through modeling of their habitat suitability and distribution. Calotropis procera, Prosopis cineraria and Ziziphus spina-christi were used for this study. The specific objectives of this study were to identify the current and future (for 2050s and 2070s) suitable habitats distribution using MaxEnt, an Ecological Envelope Model. Methods: The adopted method consists of extraction of current and future bioclimatic variables together with their land use cover and elevation for the study area. MaxEnt species distribution model was then used to simulate the distribution of the selected species. The projections are simulated for the current date, the 2050s and 2070s using Community Climate System Model version 4 with representative concentration pathway RCP4.5. Results: The current distribution model of all three species evolved with a high suitable habitat towards the north eastern part of the country. For C. procera, an area of 1775 km2 is modeled under highly suitable habitat for the current year, while it is expected to increase for both 2050s and 2070s. The current high suitability of P. cinararia was around an area of 1335 km2 and the future projection revealed an increase of high suitability habitats. Z. spina-christi showed a potential area of 5083 km2 under high suitability and it might increase in the future. Conclusions: Precipitation of coldest quarter (BIO19) had the maximum contribution for all the three species under investigation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Yang ◽  
Maigeng Zhou ◽  
Zhoupeng Ren ◽  
Mengmeng Li ◽  
Boguang Wang ◽  
...  

AbstractRecent studies have reported a variety of health consequences of climate change. However, the vulnerability of individuals and cities to climate change remains to be evaluated. We project the excess cause-, age-, region-, and education-specific mortality attributable to future high temperatures in 161 Chinese districts/counties using 28 global climate models (GCMs) under two representative concentration pathways (RCPs). To assess the influence of population ageing on the projection of future heat-related mortality, we further project the age-specific effect estimates under five shared socioeconomic pathways (SSPs). Heat-related excess mortality is projected to increase from 1.9% (95% eCI: 0.2–3.3%) in the 2010s to 2.4% (0.4–4.1%) in the 2030 s and 5.5% (0.5–9.9%) in the 2090 s under RCP8.5, with corresponding relative changes of 0.5% (0.0–1.2%) and 3.6% (−0.5–7.5%). The projected slopes are steeper in southern, eastern, central and northern China. People with cardiorespiratory diseases, females, the elderly and those with low educational attainment could be more affected. Population ageing amplifies future heat-related excess deaths 2.3- to 5.8-fold under different SSPs, particularly for the northeast region. Our findings can help guide public health responses to ameliorate the risk of climate change.


Oryx ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 752-756 ◽  
Author(s):  
Cristina Mata ◽  
Nicolás Fuentes-Allende ◽  
Juan E. Malo ◽  
André Vielma ◽  
Benito A. González

AbstractProtected areas help to decrease human impacts on threatened mammals but do not always include species’ core habitats. Here we focus on the Vulnerable taruka Hippocamelus antisensis near the Atacama Desert, Chile, a population that is mainly threatened by interactions with local human communities. We develop a species distribution model for taruka and assess the contribution of protected areas to safeguarding its preferred habitat. From sightings (collected during 2004–2015), absence records (collected in 2014), and environmental variables, we determined that taruka habitat is scarce, highly fragmented and limited to humid areas. Only 7.7–11.2% of the taruka's core habitat is under protection. We recommend the establishment of a protected area in the south of Arica-Parinacota district, an area without settlements that lies within the taruka's core habitat, along with educational programmes, fencing of crops, and inclusion of communities in decision-making in areas where farmer–taruka interactions are negative.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
Gisel Garza ◽  
Armida Rivera ◽  
Crystian Sadiel Venegas Barrera ◽  
José Guadalupe Martinez-Ávalos ◽  
Jon Dale ◽  
...  

Walker’s Manihot, Manihot walkerae, is an endangered plant that is endemic to the Tamaulipan thornscrub ecoregion of extreme southern Texas and northeastern Mexico. M. walkerae populations are highly fragmented and are found on both protected public lands and private property. Habitat loss and competition by invasive species are the most detrimental threats for M. walkerae; however, the effect of climate change on M. walkerae’s geographic distribution remains unexplored and could result in further range restrictions. Our objectives are to evaluate the potential effects of climate change on the distribution of M. walkerae and assess the usefulness of natural protected areas in future conservation. We predict current and future geographic distribution for M. walkerae (years 2050 and 2070) using three different general circulation models (CM3, CMIP5, and HADGEM) and two climate change scenarios (RCP 4.5 and 8.5). A total of nineteen spatially rarefied occurrences for M. walkerae and ten non-highly correlated bioclimatic variables were inputted to the maximum entropy algorithm (MaxEnt) to produce twenty replicates per scenario. The area under the curve (AUC) value for the consensus model was higher than 0.90 and the partial ROC value was higher than 1.80, indicating a high predictive ability. The potential reduction in geographic distribution for M. walkerae by the effect of climate change was variable throughout the models, but collectively they predict a restriction in distribution. The most severe reductions were 9% for the year 2050 with the CM3 model at an 8.5 RCP, and 14% for the year 2070 with the CMIP5 model at the 4.5 RCP. The future geographic distribution of M. walkerae was overlapped with protected lands in the U.S. and Mexico in order to identify areas that could be suitable for future conservation efforts. In the U.S. there are several protected areas that are potentially suitable for M. walkerae, whereas in Mexico no protected areas exist within M. walkerae suitable habitat.


2020 ◽  
Author(s):  
James Murphy

&lt;p&gt;The challenge of combining initialised and uninitialised decadal projections&lt;/p&gt;&lt;p&gt;James Murphy, Robin Clark, Nick Dunstone, Glen Harris, Leon Hermanson and Doug Smith&lt;/p&gt;&lt;p&gt;During the past 10 years or so, exploratory work in initialised decadal climate prediction, using global climate models started from recent analyses of observations, has grown into a coordinated international programme that contributes to IPCC assessments. At the same time, countries have continued to develop and update their national climate change scenarios.&amp;#160; These typically cover the full 21&lt;sup&gt;st&lt;/sup&gt; century, including the initial decade that overlaps with the latest initialised forecasts. To date, however, national scenarios continue to be based exclusively on long-term (uninitialised) climate change simulations, with initialised information regarded as a separate stream of information.&lt;/p&gt;&lt;p&gt;We will use early results from the latest UK national scenarios (UKCP), and the latest CMIP6 initialised predictions, to illustrate the potential and challenges associated with the notion of combining both streams of information. This involves assessing the effects of initialisation on predictability and uncertainty (as indicated, for example, by the skill of ensemble-mean forecasts and the spread amongst constituent ensemble members). Here, a particular challenge involves interpretation of the &amp;#8220;signal-to-noise&amp;#8221; problem, in which ensemble-mean skill can sometimes be found which is larger than would be expected on the basis of the ensemble spread. In addition to initialisation, we will also emphasise the importance of understanding how the assessment of climate risks depends on other features of prediction system design, including the sampling of model uncertainties and the simulation of internal climate variability.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document