scholarly journals Adipose tissues of MPC1± mice display altered lipid metabolism-related enzyme expression levels

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5799 ◽  
Author(s):  
Shiying Zou ◽  
Liye Zhu ◽  
Kunlun Huang ◽  
Haoshu Luo ◽  
Wentao Xu ◽  
...  

Mitochondrial pyruvate carrier 1 (MPC1) is a component of the MPC1/MPC2 heterodimer that facilitates the transport of pyruvate into mitochondria. Pyruvate plays a central role in carbohydrate, fatty, and amino acid catabolism. The present study examined epididymal white adipose tissue (eWAT) and intrascapular brown adipose tissue (iBAT) from MPC1± mice following 24 weeks of feeding, which indicated low energy accumulation as evidenced by low body and eWAT weight and adipocyte volume. To characterize molecular changes in energy metabolism, we analyzed the transcriptomes of the adipose tissues using RNA-Sequencing (RNA-Seq). The results showed that the fatty acid oxidation pathway was activated and several genes involved in this pathway were upregulated. Furthermore, qPCR and western blotting indicated that numerous genes and proteins that participate in lipolysis were also upregulated. Based on these findings, we propose that the energy deficiency caused by reduced MPC1 activity can be alleviated by activating the lipolytic pathway.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1626
Author(s):  
Linjie Wang ◽  
Xingyue Chen ◽  
Tianzeng Song ◽  
Xujia Zhang ◽  
Siyuan Zhan ◽  
...  

Brown adipose tissues have unique non-shivering thermogenesis functions, can be found in newborn ruminate animals, and then are gradually replaced by white adipose tissues in adulthood. For the purpose of exploring the intrinsic mechanism underlying the conversion process from brown (BAT) to white adipose tissue (WAT), it is necessary to utilize Quantitative PCR (qPCR) to study gene expression profiling. In this study, we identified reference genes that were consistently expressed during the transformation from goat BAT to WAT using RNA-seq data. Then, twelve genes were evaluated as candidate reference genes for qPCR in goat perirenal adipose tissue using three tools (geNorm, Normfinder, and BestKeeper). In addition, the selected reference genes were used to normalize the gene expression of PGC-1α and GPAT4. It was found that traditional reference genes, such as GAPDH, RPLP0, HPRT1, and PPIA were not suitable for target gene normalization. In contrast, CTNNB, PFDN5, and EIF3M, selected from RNA sequencing data, showed the least variation and were recommended as the best reference genes during the transformation from BAT to WAT.



iScience ◽  
2021 ◽  
pp. 102434
Author(s):  
Winifred W. Yau ◽  
Kiraely Adam Wong ◽  
Jin Zhou ◽  
Nivetha Kanakaram Thimmukonda ◽  
Yajun Wu ◽  
...  


2021 ◽  
Vol 22 (7) ◽  
pp. 3407
Author(s):  
Chung-Ze Wu ◽  
Li-Chien Chang ◽  
Chao-Wen Cheng ◽  
Te-Chao Fang ◽  
Yuh-Feng Lin ◽  
...  

In recent decades, the obesity epidemic has resulted in morbidity and mortality rates increasing globally. In this study, using obese mouse models, we investigated the relationship among urokinase plasminogen activator (uPA), metabolic disorders, glomerular filtration rate, and adipose tissues. Two groups, each comprised of C57BL/6J and BALB/c male mice, were fed a chow diet (CD) and a high fat diet (HFD), respectively. Within the two HFD groups, half of each group were euthanized at 8 weeks (W8) or 16 weeks (W16). Blood, urine and adipose tissues were collected and harvested for evaluation of the effects of obesity. In both mouse models, triglyceride with insulin resistance and body weight increased with duration when fed a HFD in comparison to those in the groups on a CD. In both C57BL/6J and BALB/c HFD mice, levels of serum uPA initially increased significantly in the W8 group, and then the increment decreased in the W16 group. The glomerular filtration rate declined in both HFD groups. The expression of uPA significantly decreased in brown adipose tissue (BAT), but not in white adipose tissue, when compared with that in the CD group. The results suggest a decline in the expression of uPA in BAT in obese m models as the serum uPA increases. There is possibly an association with BAT fibrosis and dysfunction, which may need further study.



2019 ◽  
Vol 317 (5) ◽  
pp. E742-E750 ◽  
Author(s):  
Tania Quesada-López ◽  
Aleix Gavaldà-Navarro ◽  
Samantha Morón-Ros ◽  
Laura Campderrós ◽  
Roser Iglesias ◽  
...  

Adaptive induction of thermogenesis in brown adipose tissue (BAT) is essential for the survival of mammals after birth. We show here that G protein-coupled receptor protein 120 (GPR120) expression is dramatically induced after birth in mouse BAT. GPR120 expression in neonatal BAT is the highest among GPR120-expressing tissues in the mouse at any developmental stage tested. The induction of GPR120 in neonatal BAT is caused by postnatal thermal stress rather than by the initiation of suckling. GPR120-null neonates were found to be relatively intolerant to cold: close to one-third did not survive at 21°C, but all such pups survived at 25°C. Heat production in BAT was significantly impaired in GPR120-null pups. Deficiency in GPR120 did not modify brown adipocyte morphology or the anatomical architecture of BAT, as assessed by electron microscopy, but instead impaired the expression of uncoupling protein-1 and the fatty acid oxidation capacity of neonatal BAT. Moreover, GPR120 deficiency impaired fibroblast growth factor 21 (FGF21) gene expression in BAT and reduced plasma FGF21 levels. These results indicate that GPR120 is essential for neonatal adaptive thermogenesis.



2021 ◽  
Vol 35 (9) ◽  
Author(s):  
Yan Wang ◽  
Xingyue Chen ◽  
Wenli Fan ◽  
Xujia Zhang ◽  
Siyuan Zhan ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haruka Kimura ◽  
Tomohisa Nagoshi ◽  
Yuhei Oi ◽  
Akira Yoshii ◽  
Yoshiro Tanaka ◽  
...  

AbstractIncreasing evidence suggests natriuretic peptides (NPs) coordinate inter-organ metabolic crosstalk with adipose tissues and play a critical role in energy metabolism. We recently reported A-type NP (ANP) raises intracellular temperature in cultured adipocytes in a low-temperature-sensitive manner. We herein investigated whether exogenous ANP-treatment exerts a significant impact on adipose tissues in vivo. Mice fed a high-fat-diet (HFD) or normal-fat-diet (NFD) for 13 weeks were treated with or without ANP infusion subcutaneously for another 3 weeks. ANP-treatment significantly ameliorated HFD-induced insulin resistance. HFD increased brown adipose tissue (BAT) cell size with the accumulation of lipid droplets (whitening), which was suppressed by ANP-treatment (re-browning). Furthermore, HFD induced enlarged lipid droplets in inguinal white adipose tissue (iWAT), crown-like structures in epididymal WAT, and hepatic steatosis, all of which were substantially attenuated by ANP-treatment. Likewise, ANP-treatment markedly increased UCP1 expression, a specific marker of BAT, in iWAT (browning). ANP also further increased UCP1 expression in BAT with NFD. Accordingly, cold tolerance test demonstrated ANP-treated mice were tolerant to cold exposure. In summary, exogenous ANP administration ameliorates HFD-induced insulin resistance by attenuating hepatic steatosis and by inducing adipose tissue browning (activation of the adipose tissue thermogenic program), leading to in vivo thermogenesis during cold exposure.



1983 ◽  
Vol 245 (1) ◽  
pp. E8-E13
Author(s):  
K. Tokuyama ◽  
H. Okuda

The effect of physical training on fatty acid synthesis in vivo was studied. After the rats had free access to a running wheel for 50 days, the rate of fatty acid synthesis estimated using 3H2O in adipose tissues of trained rats was about three times higher than that of sedentary rats in both the light and dark period. The rate of fatty acid synthesis in the liver but not in the brown adipose tissue was also slightly enhanced by physical training. The number of adipocytes was not affected, but the size of adipocytes was reduced by physical training. In trained rats, the rate of fatty acid synthesis in adipocytes whose diameter was similar to that of sedentary rats was about 10 times higher than that of sedentary rats. Within adipose tissue, the rate of fatty acid synthesis correlated positively to the diameter of adipocytes both in the sedentary and trained rats. These findings mean that the adaptive increase in fatty acid synthesis seen in adipocytes of trained rats is not secondary to the reduction in size of adipocytes.



1961 ◽  
Vol 201 (3) ◽  
pp. 540-546 ◽  
Author(s):  
William Benjamin ◽  
Alfred Gellhorn ◽  
Mary Wagner ◽  
Harold Kundel

Lipid metabolism and chemistry was studied in adipose tissues of the rat from the age of 38 days to 647 days. Aging process was characterized by a marked decrease in lipid synthesis from acetate, a reduction in the proportion of glucose metabolized by the pentose phosphate pathway, and a lower rate of palmitate incorporation into the mixed lipids. Oxidation of palmitic acid to CO2 and release of free fatty acid by epididymal fat was the same in young and old tissues under control conditions; when, however, glucose was absent from the medium or when epinephrine was added, there was a significantly greater rate of palmitic acid oxidation and free fatty acid release by young compared to old adipose tissue. Rate of acetate incorporation into mixed lipids by multiple adipose tissue sites was determined at different ages. Consistently greater rates of lipid biosynthesis were found in the epididymal, perirenal, mesenteric and interscapular adipose tissues than in subcutaneous fat at all ages. Rate of lipid synthesis by the interscapular fat (unlike any of the other depots) remained high at all ages studied. A greater proportion of short chain fatty acids was found in adipose tissues from young rats than in the old. This was related to fatty acid composition of rat milk.



Sign in / Sign up

Export Citation Format

Share Document