scholarly journals Evaluation of AAV-DJ vector for retinal gene therapy

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6317 ◽  
Author(s):  
Yusaku Katada ◽  
Kenta Kobayashi ◽  
Kazuo Tsubota ◽  
Toshihide Kurihara

Purpose The most common virus vector used in gene therapy research for ophthalmologic diseases is the adeno-associated virus (AAV) vector, which has been used successfully in a number of preclinical and clinical studies. It is important to evaluate novel AAV vectors in animal models for application of clinical gene therapy. The AAV-DJ (type 2/type 8/type 9 chimera) was engineered from shuffling eight different wild-type native viruses. In this study, we investigated the efficiency of gene transfer by AAV-DJ injections into the retina. Methods One microliter of AAV-2-CAGGS-EGFP or AAV-DJ-CAGGS-EGFP vector at a titer of 1.4 × 10e12 vg/ml was injected intravitreally or subretinally in each eye of C57BL/6 mice. We evaluated the transduction characteristics of AAV-2 and -DJ vectors using fluorescence microscopy and electroretinography. Results The results confirmed that AAV-DJ could deeply transfer gene to photoreceptor layer with intravitreal injection and has an efficient gene transfer to various cell types especially the Mueller cells in the retina. Retinal function was not affected by AAV-DJ infection or ectopic EGFP expression. Conclusions The AAV-DJ vector efficiently induces the reporter gene in both the inner and outer murine retina without functional toxicity. These data indicated that the AAV-DJ vector is a useful tool for the gene therapy research targeting retinal disorders.

2002 ◽  
Vol 76 (15) ◽  
pp. 7651-7660 ◽  
Author(s):  
Grace S. Yang ◽  
Michael Schmidt ◽  
Ziying Yan ◽  
Jonathan D. Lindbloom ◽  
Thomas C. Harding ◽  
...  

ABSTRACT Gene therapy vectors based on adeno-associated viruses (AAVs) show promise for the treatment of retinal degenerative diseases. In prior work, subretinal injections of AAV2, AAV5, and AAV2 pseudotyped with AAV5 capsids (AAV2/5) showed variable retinal pigmented epithelium (RPE) and photoreceptor cell transduction, while AAV2/1 predominantly transduced the RPE. To more thoroughly compare the efficiencies of gene transfer of AAV2, AAV3, AAV5, and AAV6, we quantified, using stereological methods, the kinetics and efficiency of AAV transduction to mouse photoreceptor cells. We observed persistent photoreceptor and RPE transduction by AAV5 and AAV2 up to 31 weeks and found that AAV5 transduced a greater volume than AAV2. AAV5 containing full-length or half-length genomes and AAV2/5 transduced comparable numbers of photoreceptor cells with similar rates of onset of expression. Compared to AAV2, AAV5 transduced significantly greater numbers of photoreceptor cells at 5 and 15 weeks after surgery (greater than 1,000 times and up to 400 times more, respectively). Also, there were 30 times more genome copies in eyes injected with AAV2/5 than in eyes injected with AAV2. Comparing AAVs with half-length genomes, AAV5 transduced only four times more photoreceptor cells than AAV2 at 5 weeks and nearly equivalent numbers at 15 weeks. The enhancement of transduction was seen at the DNA level, with 50 times more viral genome copies in retinas injected with AAV having short genomes than in retinas injected with AAV containing full-length ones. Subretinal injection of AAV2/6 showed only RPE transduction at 5 and 15 weeks, while AAV2/3 did not transduce retinal cells. We conclude that varying genome length and AAV capsids may allow for improved expression and/or gene transfer to specific cell types in the retina.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 613
Author(s):  
Katerina Stepankova ◽  
Pavla Jendelova ◽  
Lucia Machova Urdzikova

The spinal cord injury (SCI) is a medical and life-disrupting condition with devastating consequences for the physical, social, and professional welfare of patients, and there is no adequate treatment for it. At the same time, gene therapy has been studied as a promising approach for the treatment of neurological and neurodegenerative disorders by delivering remedial genes to the central nervous system (CNS), of which the spinal cord is a part. For gene therapy, multiple vectors have been introduced, including integrating lentiviral vectors and non-integrating adeno-associated virus (AAV) vectors. AAV vectors are a promising system for transgene delivery into the CNS due to their safety profile as well as long-term gene expression. Gene therapy mediated by AAV vectors shows potential for treating SCI by delivering certain genetic information to specific cell types. This review has focused on a potential treatment of SCI by gene therapy using AAV vectors.


2017 ◽  
Vol 1 (26) ◽  
pp. 2591-2599 ◽  
Author(s):  
Lindsey A. George

Abstract Concurrent with the development of recombinant factor replacement products, the characterization of the F9 and F8 genes over 3 decades ago allowed for the development of recombinant factor products and made the hemophilias a target disease for gene transfer. The progress of hemophilia gene therapy has been announced in 3 American Society of Hematology scientific plenary sessions, including the first “cure” in a large animal model of hemophilia B in 1998, first in human sustained vector-derived factor IX activity in 2011, and our clinical trial results reporting sustained vector-derived factor IX activity well into the mild or normal range in 2016. This progression to clinically meaningful success combined with numerous ongoing recombinant adeno-associated virus (rAAV)–mediated hemophilia gene transfer clinical trials suggest that the goal of gene therapy to alter the paradigm of hemophilia care may soon be realized. Although several novel therapeutics have recently emerged for hemophilia, gene therapy is unique in its potential for a one-time disease-altering, or even curative, treatment. This review will focus on the prior progress and current clinical trial investigation of rAAV-mediated gene transfer for hemophilia A and B.


2011 ◽  
Vol 2011 ◽  
pp. 1-2 ◽  
Author(s):  
Kiyotake Ishikawa ◽  
Dennis Ladage ◽  
Lisa Tilemann ◽  
Yoshiaki Kawase ◽  
Roger J. Hajjar

Cardiac gene therapy is one of the most promising approaches to cure patients with cardiac dysfunctions. Many ways of efficient gene transfer using viral vectors are tested, and some of them are already used in clinical settings. However, it is always important to be keenly alert to the possible complications when a new therapy is introduced. We present a case of myocardial sterile abscess in a swine model associated with a direct myocardial injection.


1999 ◽  
Vol 380 (6) ◽  
Author(s):  
H. Büeler

AbstractAdeno-associated virus (AAV) is a defective, non-pathogenic human parvovirus that depends for growth on coinfection with a helper adenovirus or herpes virus. Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as vectors for gene therapy. In contrast to other gene delivery systems, rAAVs lack all viral genes and show long-term gene expression


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 417 ◽  
Author(s):  
Claudia Del Vecchio ◽  
Arianna Calistri ◽  
Cristina Parolin ◽  
Carla Mucignat-Caretta

Glioblastoma (GBM) has the worst prognosis among brain tumors, hence basic biology, preclinical, and clinical studies are necessary to design effective strategies to defeat this disease. Gene transfer vectors derived from the most-studied lentivirus—the Human Immunodeficiency Virus type 1—have wide application in dissecting GBM specific features to identify potential therapeutic targets. Last-generation lentiviruses (LV), highly improved in safety profile and gene transfer capacity, are also largely employed as delivery systems of therapeutic molecules to be employed in gene therapy (GT) approaches. LV were initially used in GT protocols aimed at the expression of suicide factors to induce GBM cell death. Subsequently, LV were adopted to either express small noncoding RNAs to affect different aspects of GBM biology or to overcome the resistance to both chemo- and radiotherapy that easily develop in this tumor after initial therapy. Newer frontiers include adoption of LV for engineering T cells to express chimeric antigen receptors recognizing specific GBM antigens, or for transducing specific cell types that, due to their biological properties, can function as carriers of therapeutic molecules to the cancer mass. Finally, LV allow the setting up of improved animal models crucial for the validation of GBM specific therapies.


2009 ◽  
Vol 37 (7) ◽  
pp. 502-508 ◽  
Author(s):  
Melanie Kunze ◽  
Anke Huber ◽  
Anna Krajewski ◽  
Esther Lowden ◽  
Natascha Schuhmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document