scholarly journals Lentiviral Vectors as Tools for the Study and Treatment of Glioblastoma

Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 417 ◽  
Author(s):  
Claudia Del Vecchio ◽  
Arianna Calistri ◽  
Cristina Parolin ◽  
Carla Mucignat-Caretta

Glioblastoma (GBM) has the worst prognosis among brain tumors, hence basic biology, preclinical, and clinical studies are necessary to design effective strategies to defeat this disease. Gene transfer vectors derived from the most-studied lentivirus—the Human Immunodeficiency Virus type 1—have wide application in dissecting GBM specific features to identify potential therapeutic targets. Last-generation lentiviruses (LV), highly improved in safety profile and gene transfer capacity, are also largely employed as delivery systems of therapeutic molecules to be employed in gene therapy (GT) approaches. LV were initially used in GT protocols aimed at the expression of suicide factors to induce GBM cell death. Subsequently, LV were adopted to either express small noncoding RNAs to affect different aspects of GBM biology or to overcome the resistance to both chemo- and radiotherapy that easily develop in this tumor after initial therapy. Newer frontiers include adoption of LV for engineering T cells to express chimeric antigen receptors recognizing specific GBM antigens, or for transducing specific cell types that, due to their biological properties, can function as carriers of therapeutic molecules to the cancer mass. Finally, LV allow the setting up of improved animal models crucial for the validation of GBM specific therapies.

2002 ◽  
Vol 76 (15) ◽  
pp. 7651-7660 ◽  
Author(s):  
Grace S. Yang ◽  
Michael Schmidt ◽  
Ziying Yan ◽  
Jonathan D. Lindbloom ◽  
Thomas C. Harding ◽  
...  

ABSTRACT Gene therapy vectors based on adeno-associated viruses (AAVs) show promise for the treatment of retinal degenerative diseases. In prior work, subretinal injections of AAV2, AAV5, and AAV2 pseudotyped with AAV5 capsids (AAV2/5) showed variable retinal pigmented epithelium (RPE) and photoreceptor cell transduction, while AAV2/1 predominantly transduced the RPE. To more thoroughly compare the efficiencies of gene transfer of AAV2, AAV3, AAV5, and AAV6, we quantified, using stereological methods, the kinetics and efficiency of AAV transduction to mouse photoreceptor cells. We observed persistent photoreceptor and RPE transduction by AAV5 and AAV2 up to 31 weeks and found that AAV5 transduced a greater volume than AAV2. AAV5 containing full-length or half-length genomes and AAV2/5 transduced comparable numbers of photoreceptor cells with similar rates of onset of expression. Compared to AAV2, AAV5 transduced significantly greater numbers of photoreceptor cells at 5 and 15 weeks after surgery (greater than 1,000 times and up to 400 times more, respectively). Also, there were 30 times more genome copies in eyes injected with AAV2/5 than in eyes injected with AAV2. Comparing AAVs with half-length genomes, AAV5 transduced only four times more photoreceptor cells than AAV2 at 5 weeks and nearly equivalent numbers at 15 weeks. The enhancement of transduction was seen at the DNA level, with 50 times more viral genome copies in retinas injected with AAV having short genomes than in retinas injected with AAV containing full-length ones. Subretinal injection of AAV2/6 showed only RPE transduction at 5 and 15 weeks, while AAV2/3 did not transduce retinal cells. We conclude that varying genome length and AAV capsids may allow for improved expression and/or gene transfer to specific cell types in the retina.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6317 ◽  
Author(s):  
Yusaku Katada ◽  
Kenta Kobayashi ◽  
Kazuo Tsubota ◽  
Toshihide Kurihara

Purpose The most common virus vector used in gene therapy research for ophthalmologic diseases is the adeno-associated virus (AAV) vector, which has been used successfully in a number of preclinical and clinical studies. It is important to evaluate novel AAV vectors in animal models for application of clinical gene therapy. The AAV-DJ (type 2/type 8/type 9 chimera) was engineered from shuffling eight different wild-type native viruses. In this study, we investigated the efficiency of gene transfer by AAV-DJ injections into the retina. Methods One microliter of AAV-2-CAGGS-EGFP or AAV-DJ-CAGGS-EGFP vector at a titer of 1.4 × 10e12 vg/ml was injected intravitreally or subretinally in each eye of C57BL/6 mice. We evaluated the transduction characteristics of AAV-2 and -DJ vectors using fluorescence microscopy and electroretinography. Results The results confirmed that AAV-DJ could deeply transfer gene to photoreceptor layer with intravitreal injection and has an efficient gene transfer to various cell types especially the Mueller cells in the retina. Retinal function was not affected by AAV-DJ infection or ectopic EGFP expression. Conclusions The AAV-DJ vector efficiently induces the reporter gene in both the inner and outer murine retina without functional toxicity. These data indicated that the AAV-DJ vector is a useful tool for the gene therapy research targeting retinal disorders.


Author(s):  
Katrin Gäbel ◽  
Nadja Lydia Bednorz ◽  
Petra Klemmt ◽  
Vida Vafaizadeh ◽  
Corina Borghouts ◽  
...  

Abstract: Signal transducer and activator of transcription 3 and 5 (Stat3 and Stat5) play important roles in cell differentiation, proliferation, apoptosis and inflammation. They are transiently activated by ligand-receptor interactions in normal cells but are often found to be constitutively active in cancer cells. Analysis of their activation pattern is therefore important for the description of developmental processes and the understanding of cellular transformation.: To visualize Stat3 and Stat5 transactivation activity in different cell types, we designed novel reporter constructs. These constructs comprise Stat3 or Stat5 specific promoter elements and reporter genes encoding β-galactosidase or fluorescent proteins. These constructs were integrated into lentiviral gene transfer vectors facilitating efficient transduction of most cell types.: The lentiviral reporter constructs were used to infect different cell types and their inducibility by activated Stat3 or Stat5 was measured. The Stat3-mCherry reporter was active in transduced tumor cells, which exhibit high levels of phosphorylated Stat3 and it was inducible in HepG2 liver cells by interleukin-6 treatment. The Stat5-LacZ reporter was active in cultured cells upon hormone induction of Stat5 and in primary mammary epithelial cells transplanted into cleared fat pads of mice during late pregnancy.: These novel reporter constructs are valuable tools to investigate and to distinguish between Stat3 and Stat5 activity in primary cells and cancer cells. They will also be useful in the discovery of drugs targeting Stat3 or Stat5. They can also be employed to generate transgenic mice and track Stat activity during development.


2006 ◽  
Vol 87 (10) ◽  
pp. 2901-2905 ◽  
Author(s):  
P. Fuschiotti ◽  
P. Fender ◽  
G. Schoehn ◽  
J. F. Conway

The subviral dodecahedral particle of adenovirus 3, which assembles spontaneously in insect cells expressing the viral penton base protein, shows promise as a vector for drug delivery. Its ability to gain cell entry has been demonstrated and recent structural analysis has outlined details of the interfaces between penton bases and the importance of proteolysis of the penton base N terminus for assembly, providing a basis for understanding particle assembly and stability. Here, work in manipulating the assembly status of the dodecahedron by changing buffer conditions and subsequent success in passively encapsidating a marker molecule is described. This represents an important stage towards development of the dodecahedral particle for use as a delivery vehicle capable of targeting therapeutic molecules to specific cell types.


1999 ◽  
Vol 10 (3) ◽  
pp. 276-283 ◽  
Author(s):  
B.J. Baum ◽  
B.C. O'Connell

Considerable progress has occurred recently in transferring foreign genes to different tissues in vivo. Gene transfer to salivary glands has mirrored progress in the general field. Most salivary studies have utilized replication-deficient, recombinant adenoviruses as gene transfer vectors in rat models. These vectors are able to transduce almost all rat salivary epithelial cell types and lead to relatively high levels of transgene expression. Additionally, successful, though quite modest, gene transfer to salivary glands has been achieved with retroviral vectors and with different plasmid conjugates (liposomes; non-recombinant adenoviruses). Salivary gland gene transfer has been used for two potential clinical goals: (i) the repair of hypo-functional gland parenchyma, and (ii) the production of secretory transgene products for either systemic or upper gastrointestinal tract pharmaceutical use. Gene transfer can also be used as a powerful tool to alter cellular phenotype in vivo and probe cell biological questions. The current spectrum of studies demonstrates the potential broad and profound influence gene transfer can make on salivary physiology and pathophysiology.


Author(s):  
S. Tai

Extensive cytological and histological research, correlated with physiological experimental analysis, have been done on the anterior pituitaries of many different vertebrates which have provided the knowledge to create the concept that specific cell types synthesize, store and release their specific hormones. These hormones are stored in or associated with granules. Nevertheless, there are still many doubts - that need further studies, specially on the ultrastructure and physiology of these endocrine cells during the process of synthesis, transport and secretion, whereas some new methods may provide the information about the intracellular structure and activity in detail.In the present work, ultrastructural study of the hormone-secretory cells of chicken pituitaries have been done by using TEM as well as HR-SEM, to correlate the informations obtained from 2-dimensional TEM micrography with the 3-dimensional SEM topographic images, which have a continous surface with larger depth of field that - offers the adventage to interpretate some intracellular structures which were not possible to see using TEM.


2020 ◽  
Vol 4 (6) ◽  
pp. 645-675
Author(s):  
Parasuraman Padmanabhan ◽  
Mathangi Palanivel ◽  
Ajay Kumar ◽  
Domokos Máthé ◽  
George K. Radda ◽  
...  

Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document