scholarly journals Leptin-a mediates transcription of genes that participate in central endocrine and phosphatidylinositol signaling pathways in 72-hour embryonic zebrafish (Danio rerio)

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6848
Author(s):  
Matthew Tuttle ◽  
Mark R. Dalman ◽  
Qin Liu ◽  
Richard L. Londraville

We analyzed microarray expression data to highlight biological pathways that respond to embryonic zebrafish Leptin-a (lepa) signaling. Microarray expression measures for 26,046 genes were evaluated from lepa morpholino oligonucleotide “knockdown”, recombinant Leptin-a “rescue”, and uninjected control zebrafish at 72-hours post fertilization. In addition to KEGG pathway enrichment for phosphatidylinositol signaling and neuroactive ligand-receptor interactions, Gene Ontology (GO) data from lepa rescue zebrafish include JAK/STAT cascade, sensory perception, nervous system processes, and synaptic signaling. In the zebrafish lepa rescue treatment, we found changes in the expression of homologous genes that align with mammalian leptin signaling cascades including AMPK (prkaa2), ACC (acacb), Ca2+/calmodulin-dependent kinase (camkk2), PI3K (pik3r1), Ser/Thr protein kinase B (akt3), neuropeptides (agrp2, cart1), mitogen-activated protein kinase (MAPK), and insulin receptor substrate (LOC794738, LOC100537326). Notch signaling pathway and ribosome biogenesis genes respond to knockdown of Leptin-a. Differentially expressed transcription factors in lepa knockdown zebrafish regulate neurogenesis, neural differentiation, and cell fate commitment. This study presents a role for zebrafish Leptin-a in influencing expression of genes that mediate phosphatidylinositol and central endocrine signaling.

Author(s):  
Benjamin L. Shneider ◽  
Nahir Cortes-Santiago ◽  
Deborah A. Schady ◽  
Swapna Krishnamoorthy ◽  
Sundararajah Thevananther ◽  
...  

Activation of Mitogen-activated protein kinases (MAPKs) is a key factor in the pathogenesis of cancer, although the specific role of mitogen-activated protein kinase kinase (MEK1) is not well understood. Villin promoter driven cre expression was used to excise a floxed stop cassette from a phosphomimetically constitutively activated MEK1 (caMEK1) expression construct in the intestine of C57BL/6 mice. Zygosity status of caMEK1 afforded assessment of the dose dependence of the effect. The expected mendelian distribution of genotypes and sex was observed in 443 progenies. Between 21 and 63 days of life caMEK1 had no effect on body weight in male mice, but reduced body weight in female mice homozygous for caMEK1. At 10 weeks of age, the ileum of caMEK1 expressing mice was characterized by the finding of dysplasia and profound changes in overall architecture. Paneth cells were nearly absent in caMEK1 homozygotes. Targeted proteomic profiling via reverse phase protein array analyses with confirmatory western blotting revealed significant changes in protein and phosphoprotein expression including up-regulation of proteins downstream of MEK1, associated with enhanced markers of proliferation, diminished apoptosis, alterations in cell-fate determination, cell-cell interactions and tight junctions. Long-term viability of caMEK1 homozygous mice was reduced with no survival beyond one year. Invasive adenocarcinoma developed in three of ten older mice (15 [homozygous], 26 [homozygous] and 35 weeks [heterozygous] of age). Expression of caMEK1 in enterocytes leads to marked derangements in the intestinal epithelium, which is associated with a predisposition to the development of invasive cancer.


2008 ◽  
Vol 19 (3) ◽  
pp. 957-970 ◽  
Author(s):  
Song Yi ◽  
Nidhi Sahni ◽  
Karla J. Daniels ◽  
Claude Pujol ◽  
Thyagarajan Srikantha ◽  
...  

Candida albicans must undergo a switch from white to opaque to mate. Opaque cells then release mating type-specific pheromones that induce mating responses in opaque cells. Uniquely in C. albicans, the same pheromones induce mating-incompetent white cells to become cohesive, form an adhesive basal layer of cells on a surface, and then generate a thicker biofilm that, in vitro, facilitates mating between minority opaque cells. Through mutant analysis, it is demonstrated that the pathways regulating the white and opaque cell responses to the same pheromone share the same upstream components, including receptors, heterotrimeric G protein, and mitogen-activated protein kinase cascade, but they use different downstream transcription factors that regulate the expression of genes specific to the alternative responses. This configuration, although common in higher, multicellular systems, is not common in fungi, and it has not been reported in Saccharomyces cerevisiae. The implications in the evolution of multicellularity in higher eukaryotes are discussed.


2004 ◽  
Vol 24 (2) ◽  
pp. 573-583 ◽  
Author(s):  
Myungjin Kim ◽  
Guang-Ho Cha ◽  
Sunhong Kim ◽  
Jun Hee Lee ◽  
Jeehye Park ◽  
...  

ABSTRACT Mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP-3) is a well-known negative regulator in the Ras/extracellular signal-regulated kinase (ERK)-MAPK signaling pathway responsible for cell fate determination and proliferation during development. However, the physiological roles of MKP-3 and the mechanism by which MKP-3 regulates Ras/Drosophila ERK (DERK) signaling in vivo have not been determined. Here, we demonstrated that Drosophila MKP-3 (DMKP-3) is critically involved in cell differentiation, proliferation, and gene expression by suppressing the Ras/DERK pathway, specifically binding to DERK via the N-terminal ERK-binding domain of DMKP-3. Overexpression of DMKP-3 reduced the number of photoreceptor cells and inhibited wing vein differentiation. Conversely, DMKP-3 hypomorphic mutants exhibited extra photoreceptor cells and wing veins, and its null mutants showed striking phenotypes, such as embryonic lethality and severe defects in oogenesis. All of these phenotypes were highly similar to those of the gain-of-function mutants of DERK/rl. The functional interaction between DMKP-3 and the Ras/DERK pathway was further confirmed by genetic interactions between DMKP-3 loss-of-function mutants or overexpressing transgenic flies and various mutants of the Ras/DERK pathway. Collectively, these data provide the direct evidences that DMKP-3 is indispensable to the regulation of DERK signaling activity during Drosophila development.


1999 ◽  
Vol 19 (1) ◽  
pp. 330-341 ◽  
Author(s):  
Simon J. Cook ◽  
Natasha Aziz ◽  
Martin McMahon

ABSTRACT In Rat-1 fibroblasts nonmitogenic doses of lysophosphatidic acid (LPA) stimulate a transient activation of mitogen-activated protein kinase (MAPK), whereas mitogenic doses elicit a sustained response. This sustained phase of MAPK activation regulates cell fate decisions such as proliferation or differentiation, presumably by inducing a program of gene expression which is not observed in response to transient MAPK activation. We have examined the expression of members of the AP-1 transcription factor complex in response to stimulation with different doses of LPA. c-Fos, c-Jun, and JunB are induced rapidly in response to LPA stimulation, whereas Fra-1 and Fra-2 are induced after a significant lag. The expression of c-Fos is transient, whereas the expression of c-Jun, JunB, Fra-1, and Fra-2 is sustained. The early expression of c-Fos can be reconstituted with nonmitogenic doses of LPA, but the response is transient compared to that observed with mitogenic doses. In contrast, expression of Fra-1, Fra-2, and JunB and optimal expression of c-Jun are observed only with doses of LPA which induce sustained MAPK activation and DNA synthesis. LPA-stimulated expression of c-Fos, Fra-1, Fra-2, c-Jun, and JunB is inhibited by the MEK1 inhibitor PD098059, indicating that the Raf-MEK-MAPK cascade is required for their expression. In cells expressing a conditionally active form of Raf-1 (ΔRaf-1:ER), we observed that selective, sustained activation of Raf-MEK-MAPK was sufficient to induce expression of Fra-1, Fra-2, and JunB but, interestingly, induced little or no c-Fos or c-Jun. The induction of c-Fos observed in response to LPA was strongly inhibited by buffering the intracellular [Ca2+]. Moreover, although Raf activation or calcium ionophores induced little c-Fos expression, we observed a synergistic induction in response to the combination of ΔRaf-1:ER and ionomycin. These results suggest that kinetically distinct phases of MAPK activation serve to regulate the expression of distinct AP-1 components such that sustained MAPK activation is required for the induced expression of Fra-1, Fra-2, c-Jun, and JunB. However, in contrast to the case for Fra-1, Fra-2, and JunB, activation of the MAPK cascade alone is not sufficient to induce c-Fos expression, which rather requires cooperation with other signals such as Ca2+mobilization. Finally, the identification of the Fra-1, Fra-2, c-Jun, and JunB genes as genes which are selectively regulated by sustained MAPK activation or in response to activated Raf suggests that they are candidates to mediate certain of the effects of Ras proteins in oncogenic transformation.


2005 ◽  
Vol 25 (11) ◽  
pp. 4676-4682 ◽  
Author(s):  
Jeffrey P. MacKeigan ◽  
Leon O. Murphy ◽  
Christopher A. Dimitri ◽  
John Blenis

ABSTRACT The mitogen-activated protein kinase (MAPK) pathway is an evolutionarily conserved signaling module that controls important cell fate decisions in a variety of physiological contexts. During Xenopus oocyte maturation, the MAPK cascade converts an increasing progesterone stimulus into a switch-like, all-or-nothing response. While the importance of such switch-like behavior is widely discussed in the literature, it is not known whether the MAPK pathway in mammalian cells exhibits a switch-like or graded response. For this study, we used flow cytometry and immunofluorescence to generate single-cell measurements of MAPK signaling in Swiss 3T3 fibroblasts. In contrast to the case in Xenopus oocytes, we found that ERK activation in individual mammalian cells is not ultrasensitive and shows a graded response to changes in agonist concentration. Thus, the conserved MAPK signaling module exhibits different systems-level properties in different cellular contexts. Furthermore, the graded ERK response was converted into a more switch-like behavior at the level of immediate-early gene induction and cell cycle progression. Thus, while MAPK signaling is involved in all-or-nothing cell fate decisions for both Xenopus oocyte maturation and mammalian fibroblast proliferation, the underlying mechanisms responsible for the switch-like nature of the cellular responses are different in these two systems, with the mechanism appearing to lie downstream of the kinase cascade in mammalian fibroblasts.


2008 ◽  
Vol 74 (11) ◽  
pp. 3596-3600 ◽  
Author(s):  
Ali Atoui ◽  
Dapeng Bao ◽  
Navgeet Kaur ◽  
W. Scott Grayburn ◽  
Ana M. Calvo

ABSTRACT The Aspergillus nidulans putative mitogen-activated protein kinase encoded by mpkB has a role in natural product biosynthesis. An mpkB mutant exhibited a decrease in sterigmatocystin gene expression and low mycotoxin levels. The mutation also affected the expression of genes involved in penicillin and terrequinone A synthesis. mpkB was necessary for normal expression of laeA, which has been found to regulate secondary metabolism gene clusters.


Viruses ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 570 ◽  
Author(s):  
Ajay Mishra ◽  
Atul Kumar ◽  
Deepti Mishra ◽  
Vishnu Nath ◽  
Jernej Jakše ◽  
...  

Viroids are smallest known pathogen that consist of non-capsidated, single-stranded non-coding RNA replicons and they exploits host factors for their replication and propagation. The severe stunting disease caused by Citrus bark cracking viroid (CBCVd) is a serious threat, which spreads rapidly within hop gardens. In this study, we employed comprehensive transcriptome analyses to dissect host-viroid interactions and identify gene expression changes that are associated with disease development in hop. Our analysis revealed that CBCVd-infection resulted in the massive modulation of activity of over 2000 genes. Expression of genes associated with plant immune responses (protein kinase and mitogen-activated protein kinase), hypersensitive responses, phytohormone signaling pathways, photosynthesis, pigment metabolism, protein metabolism, sugar metabolism, and modification, and others were altered, which could be attributed to systemic symptom development upon CBCVd-infection in hop. In addition, genes encoding RNA-dependent RNA polymerase, pathogenesis-related protein, chitinase, as well as those related to basal defense responses were up-regulated. The expression levels of several genes identified from RNA sequencing analysis were confirmed by qRT-PCR. Our systematic comprehensive CBCVd-responsive transcriptome analysis provides a better understanding and insights into complex viroid-hop plant interaction. This information will assist further in the development of future measures for the prevention of CBCVd spread in hop fields.


Sign in / Sign up

Export Citation Format

Share Document