scholarly journals MKP-3 Has Essential Roles as a Negative Regulator of the Ras/Mitogen-Activated Protein Kinase Pathway during Drosophila Development

2004 ◽  
Vol 24 (2) ◽  
pp. 573-583 ◽  
Author(s):  
Myungjin Kim ◽  
Guang-Ho Cha ◽  
Sunhong Kim ◽  
Jun Hee Lee ◽  
Jeehye Park ◽  
...  

ABSTRACT Mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP-3) is a well-known negative regulator in the Ras/extracellular signal-regulated kinase (ERK)-MAPK signaling pathway responsible for cell fate determination and proliferation during development. However, the physiological roles of MKP-3 and the mechanism by which MKP-3 regulates Ras/Drosophila ERK (DERK) signaling in vivo have not been determined. Here, we demonstrated that Drosophila MKP-3 (DMKP-3) is critically involved in cell differentiation, proliferation, and gene expression by suppressing the Ras/DERK pathway, specifically binding to DERK via the N-terminal ERK-binding domain of DMKP-3. Overexpression of DMKP-3 reduced the number of photoreceptor cells and inhibited wing vein differentiation. Conversely, DMKP-3 hypomorphic mutants exhibited extra photoreceptor cells and wing veins, and its null mutants showed striking phenotypes, such as embryonic lethality and severe defects in oogenesis. All of these phenotypes were highly similar to those of the gain-of-function mutants of DERK/rl. The functional interaction between DMKP-3 and the Ras/DERK pathway was further confirmed by genetic interactions between DMKP-3 loss-of-function mutants or overexpressing transgenic flies and various mutants of the Ras/DERK pathway. Collectively, these data provide the direct evidences that DMKP-3 is indispensable to the regulation of DERK signaling activity during Drosophila development.

2019 ◽  
Vol 11 (483) ◽  
pp. eaaq1238 ◽  
Author(s):  
David H. Peng ◽  
Samrat T. Kundu ◽  
Jared J. Fradette ◽  
Lixia Diao ◽  
Pan Tong ◽  
...  

Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors have failed to show clinical benefit in Kirsten rat sarcoma (KRAS) mutant lung cancer due to various resistance mechanisms. To identify differential therapeutic sensitivities between epithelial and mesenchymal lung tumors, we performed in vivo small hairpin RNA screens, proteomic profiling, and analysis of patient tumor datasets, which revealed an inverse correlation between mitogen-activated protein kinase (MAPK) signaling dependency and a zinc finger E-box binding homeobox 1 (ZEB1)–regulated epithelial-to-mesenchymal transition. Mechanistic studies determined that MAPK signaling dependency in epithelial lung cancer cells is due to the scaffold protein interleukin-17 receptor D (IL17RD), which is directly repressed by ZEB1. Lung tumors in multiple Kras mutant murine models with increased ZEB1 displayed low IL17RD expression, accompanied by MAPK-independent tumor growth and therapeutic resistance to MEK inhibition. Suppression of ZEB1 function with miR-200 expression or the histone deacetylase inhibitor mocetinostat sensitized resistant cancer cells to MEK inhibition and markedly reduced in vivo tumor growth, showing a promising combinatorial treatment strategy for KRAS mutant cancers. In human lung tumor samples, high ZEB1 and low IL17RD expression correlated with low MAPK signaling, presenting potential markers that predict patient response to MEK inhibitors.


2005 ◽  
Vol 25 (11) ◽  
pp. 4676-4682 ◽  
Author(s):  
Jeffrey P. MacKeigan ◽  
Leon O. Murphy ◽  
Christopher A. Dimitri ◽  
John Blenis

ABSTRACT The mitogen-activated protein kinase (MAPK) pathway is an evolutionarily conserved signaling module that controls important cell fate decisions in a variety of physiological contexts. During Xenopus oocyte maturation, the MAPK cascade converts an increasing progesterone stimulus into a switch-like, all-or-nothing response. While the importance of such switch-like behavior is widely discussed in the literature, it is not known whether the MAPK pathway in mammalian cells exhibits a switch-like or graded response. For this study, we used flow cytometry and immunofluorescence to generate single-cell measurements of MAPK signaling in Swiss 3T3 fibroblasts. In contrast to the case in Xenopus oocytes, we found that ERK activation in individual mammalian cells is not ultrasensitive and shows a graded response to changes in agonist concentration. Thus, the conserved MAPK signaling module exhibits different systems-level properties in different cellular contexts. Furthermore, the graded ERK response was converted into a more switch-like behavior at the level of immediate-early gene induction and cell cycle progression. Thus, while MAPK signaling is involved in all-or-nothing cell fate decisions for both Xenopus oocyte maturation and mammalian fibroblast proliferation, the underlying mechanisms responsible for the switch-like nature of the cellular responses are different in these two systems, with the mechanism appearing to lie downstream of the kinase cascade in mammalian fibroblasts.


2001 ◽  
Vol 194 (3) ◽  
pp. 275-284 ◽  
Author(s):  
Antonio Di Cristofano ◽  
Masaru Niki ◽  
Mingming Zhao ◽  
Fredrick G. Karnell ◽  
Bayard Clarkson ◽  
...  

p62dok has been identified as a substrate of many oncogenic tyrosine kinases such as the chronic myelogenous leukemia (CML) chimeric p210bcr-abl oncoprotein. It is also phosphorylated upon activation of many receptors and cytoplamic tyrosine kinases. However, the biological functions of p62dok in normal cell signaling as well as in p210bcr-abl leukemogenesis are as yet not fully understood. Here we show, in hemopoietic and nonhemopoietic cells derived from p62dok−/− mice, that the loss of p62dok results in increased cell proliferation upon growth factor treatment. Moreover, Ras and mitogen-activated protein kinase (MAPK) activation is markedly sustained in p62dok−/− cells after the removal of growth factor. However, p62dok inactivation does not affect DNA damage and growth factor deprivation–induced apoptosis. Furthermore, p62dok inactivation causes a significant shortening in the latency of the fatal myeloproliferative disease induced by retroviral-mediated transduction of p210bcr-abl in bone marrow cells. These data indicate that p62dok acts as a negative regulator of growth factor–induced cell proliferation, at least in part through downregulating Ras/MAPK signaling pathway, and that p62dok can oppose leukemogenesis by p210bcr-abl.


2016 ◽  
Vol 90 (21) ◽  
pp. 9743-9757 ◽  
Author(s):  
Finny S. Varghese ◽  
Bastian Thaa ◽  
Siti Naqiah Amrun ◽  
Diane Simarmata ◽  
Kai Rausalu ◽  
...  

ABSTRACT Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH 2 -terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen-activated protein kinase signaling. The relevance of these signaling cascades in the viral life cycle was emphasized by specific inhibitors of these kinase pathways, which decreased the production of progeny virions. Berberine significantly reduced CHIKV-induced inflammatory disease in a mouse model, demonstrating efficacy of the drug in vivo . Overall, this work makes a strong case for pursuing berberine as a potential anti-CHIKV therapeutic compound and for exploring the MAPK signaling pathways as antiviral targets against alphavirus infections.


2004 ◽  
Vol 24 (24) ◽  
pp. 10954-10964 ◽  
Author(s):  
Charles E. Foulds ◽  
Mary L. Nelson ◽  
Adam G. Blaszczak ◽  
Barbara J. Graves

ABSTRACT Cell signaling affects gene expression by regulating the activity of transcription factors. Here, we report that mitogen-activated protein kinase (MAPK) phosphorylation of Ets-1 and Ets-2, at a conserved site N terminal to their Pointed (PNT) domains, resulted in enhanced transactivation by preferential recruitment of the coactivators CREB binding protein (CBP) and p300. We discovered this phosphorylation-augmented interaction in an unbiased affinity chromatography screen of HeLa nuclear extracts by using either mock-treated or ERK2-phosphorylated ETS proteins as ligands. Binding between purified proteins demonstrated a direct interaction. Both the phosphoacceptor site, which lies in an unstructured region, and the PNT domain were required for the interaction. Minimal regions that were competent for induced CBP/p300 binding in vitro also supported MAPK-enhanced transcription in vivo. CBP coexpression potentiated MEK1-stimulated Ets-2 transactivation of promoters with Ras-responsive elements. Furthermore, CBP and Ets-2 interacted in a phosphorylation-enhanced manner in vivo. This study describes a distinctive interface for a transcription factor-coactivator complex and demonstrates a functional role for inducible CBP/p300 binding. In addition, our findings decipher the mechanistic link between Ras/MAPK signaling and two specific transcription factors that are relevant to both normal development and tumorigenesis.


2005 ◽  
Vol 25 (9) ◽  
pp. 3784-3792 ◽  
Author(s):  
Midori Kayahara ◽  
Xin Wang ◽  
Cathy Tournier

ABSTRACT To further understand how the mitogen-activated protein kinase (MAPK) signaling pathways regulate AP-1 activity, we have elucidated the physiological role of these cascades in the regulation of c-jun gene expression. c-Jun is a crucial component of AP-1 complexes and has been shown in vitro to be a point of integration of numerous signals that can differentially affect its expression as well as its transcriptional activity. Our strategy was based on the use of (i) genetically modified fibroblasts deficient in components of the MAPK cascades and (ii) pharmacological reagents. The results demonstrate that c-Jun NH2-terminal protein kinase (JNK) is essential for a basal level of c-Jun expression and for c-Jun phosphorylation in response to stress. In addition to JNK, p38 MAPK or ERK1/2 and ERK5 are required for mediating UV radiation- or epidermal growth factor (EGF)-induced c-Jun expression, respectively. Further studies indicate that p38 MAPK inhibits the activation of JNK in response to EGF, causing a down-regulation of c-Jun. Overall, these data provide important insights into the mechanisms that ultimately determine the function of c-Jun as a regulator of cell fate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael J. Wagner ◽  
Yasmin A. Lyons ◽  
Jean H. Siedel ◽  
Robert Dood ◽  
Archana S. Nagaraja ◽  
...  

AbstractAngiosarcoma is an aggressive malignancy of endothelial cells that carries a high mortality rate. Cytotoxic chemotherapy can elicit clinical responses, but the duration of response is limited. Sequencing reveals multiple mutations in angiogenesis pathways in angiosarcomas, particularly in vascular endothelial growth factor (VEGFR) and mitogen-activated protein kinase (MAPK) signaling. We aimed to determine the biological relevance of these pathways in angiosarcoma. Tissue microarray consisting of clinical formalin-fixed paraffin embedded tissue archival samples were stained for phospho- extracellular signal-regulated kinase (p-ERK) with immunohistochemistry. Angiosarcoma cell lines were treated with the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib, pan-VEGFR inhibitor cediranib, or combined trametinib and cediranib and viability was assessed. Reverse phase protein array (RPPA) was performed to assess multiple oncogenic protein pathways. SVR angiosarcoma cells were grown in vivo and gene expression effects of treatment were assessed with whole exome RNA sequencing. MAPK signaling was found active in over half of clinical angiosarcoma samples. Inhibition of MAPK signaling with the MEK inhibitor trametinib decreased the viability of angiosarcoma cells. Combined inhibition of the VEGF and MAPK pathways with cediranib and trametinib had an additive effect in in vitro models, and a combinatorial effect in an in vivo model. Combined treatment led to smaller tumors than treatment with either agent alone. RNA-seq demonstrated distinct expression signatures between the trametinib treated tumors and those treated with both trametinib and cediranib. These results indicate a clinical study of combined VEGFR and MEK inhibition in angiosarcoma is warranted.


2001 ◽  
Vol 21 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Janel Warmka ◽  
Jennifer Hanneman ◽  
Ji Lee ◽  
Dipesh Amin ◽  
Irene Ota

ABSTRACT The HOG (high-osmolarity glycerol) mitogen-activated protein kinase (MAPK) pathway regulates the osmotic stress response in the yeast Saccharomyces cerevisiae. Three type 2C Ser/Thr phosphatases (PTCs), Ptc1, Ptc2, and Ptc3, have been isolated as negative regulators of this pathway. Previously, multicopy expression of PTC1 and PTC3 was shown to suppress lethality of the sln1Δ strain due to hyperactivation of the HOG pathway. In this work, we show thatPTC2 also suppresses sln1Δ lethality. Furthermore, the phosphatase activity of these PTCs was needed for suppression, as mutation of a conserved Asp residue, likely to coordinate a metal ion, inactivated PTCs. Further analysis of Ptc1 function in vivo showed that it inactivates the MAPK, Hog1, but not the MEK, Pbs2. In the wild type, Hog1 kinase activity increased transiently, ∼12-fold in response to osmotic stress, while overexpression of PTC1 limited activation to ∼3-fold. In contrast, overexpression of PTC1 did not inhibit phosphorylation of Hog1 Tyr in the phosphorylation lip, suggesting that Ptc1 does not act on Pbs2. Deletion of PTC1 also strongly affected Hog1, leading to high basal Hog1 activity and sustained Hog1 activity in response to osmotic stress, the latter being consistent with a role for Ptc1 in adaptation. In vitro, Ptc1 but not the metal binding site mutant, Ptc1D58N, inactivated Hog1 by dephosphorylating the phosphothreonine but not the phosphotyrosine residue in the phosphorylation lip. Consistent with its role as a negative regulator of Hog1, which accumulates in the nucleus upon activation, Ptc1 was found in both the nucleus and the cytoplasm. Thus, one function of Ptc1 is to inactivate Hog1.


2004 ◽  
Vol 24 (1) ◽  
pp. 144-153 ◽  
Author(s):  
Leon O. Murphy ◽  
Jeffrey P. MacKeigan ◽  
John Blenis

ABSTRACT The strength and duration of mitogen-activated protein kinase (MAPK) signaling have been shown to regulate cell fate in different cell types. In this study, a general mechanism is described that explains how subtle differences in signaling kinetics are translated into a specific biological outcome. In fibroblasts, the expression of immediate early gene (IEG)-encoded Fos, Jun, Myc, and early growth response gene 1 (Egr-1) transcription factors is significantly extended by sustained extracellular signal-regulated kinase 1 and 2 (ERK1 and -2) signaling. Several of these proteins contain functional docking site for ERK, FXFP (DEF) domains that serve to locally concentrate the active kinase, thus showing that they can function as ERK sensors. Sustained ERK signaling regulates the posttranslational modifications of these IEG-encoded sensors, which contributes to their sustained expression during the G1-S transition. DEF domain-containing sensors can also interpret the small changes in ERK signal strength that arise from less than a threefold reduction in agonist concentration. As a result, downstream target gene expression and cell cycle progression are significantly changed.


Sign in / Sign up

Export Citation Format

Share Document