scholarly journals Genome-wide identification and classification of the Hsf and sHsp gene families in Prunus mume, and transcriptional analysis under heat stress

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7312 ◽  
Author(s):  
Xueli Wan ◽  
Jie Yang ◽  
Cong Guo ◽  
Manzhu Bao ◽  
Junwei Zhang

The transcriptional activation of heat shock proteins (Hsps) by heat shock transcription factors (Hsfs) is presumed to have a pivotal role in plant heat stress (HS) response. Prunus mume is an ornamental woody plant with distinctive features, including rich varieties and colors. In this study, 18 Hsfs and 24 small Hsps (sHsps) were identified in P. mume. Their chromosomal locations, protein domains, conserved motifs, phylogenetic relationships, and exon–intron structures were analyzed and compared with Arabidopsis thaliana Hsfs or sHsps. A total of 18 PmHsf members were classified into three major classes, A, B, and C. A total of 24 PmsHsps were grouped into eight subfamilies (CI to CIII, P, endoplasmic reticulum, M, and CI- or P-related). Quantitative reverse transcription PCR analysis revealed that members of the A2, A7, and A9 groups became the prominent Hsfs after heat shock, suggesting their involvement in a key regulatory role of heat tolerance. Most of the PmsHsp genes were up-regulated upon exposure to HS. Overall, our data contribute to an improved understanding of the complexity of the P. mume Hsf and sHsp gene families, and provide a basis for directing future systematic studies investigating the roles of the Hsf and sHsp gene families.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joon-Yung Cha ◽  
Sang-Ho Kang ◽  
Imdad Ali ◽  
Sang Cheol Lee ◽  
Myung Geun Ji ◽  
...  

Abstract Humic acid (HA) is composed of a complex supramolecular association and is produced by humification of organic matters in soil environments. HA not only improves soil fertility, but also stimulates plant growth. Although numerous bioactivities of HA have been reported, the molecular evidences have not yet been elucidated. Here, we performed transcriptomic analysis to identify the HA-prompted molecular mechanisms in Arabidopsis. Gene ontology enrichment analysis revealed that HA up-regulates diverse genes involved in the response to stress, especially to heat. Heat stress causes dramatic induction in unique gene families such as Heat-Shock Protein (HSP) coding genes including HSP101, HSP81.1, HSP26.5, HSP23.6, and HSP17.6A. HSPs mainly function as molecular chaperones to protect against thermal denaturation of substrates and facilitate refolding of denatured substrates. Interestingly, wild-type plants grown in HA were heat-tolerant compared to those grown in the absence of HA, whereas Arabidopsis HSP101 null mutant (hot1) was insensitive to HA. We also validated that HA accelerates the transcriptional expression of HSPs. Overall, these results suggest that HSP101 is a molecular target of HA promoting heat-stress tolerance in Arabidopsis. Our transcriptome information contributes to understanding the acquired genetic and agronomic traits by HA conferring tolerance to environmental stresses in plants.


2020 ◽  
Author(s):  
Hong Zhang ◽  
Huan Guo ◽  
Guanghao Wang ◽  
Changyou Wang ◽  
Yajuan Wang ◽  
...  

AbstractHeat shock proteins (HSPs), which are encoded by conserved gene families in plants, are crucial for development and responses to diverse stresses. However, the wheat (Triticum aestivum) HSPs have not been systematically classified, especially those involved in protecting plants from disease. Here, we classified 119 DnaJ (Hsp40) proteins (TaDnaJs; encoded by 313 genes) and 41 Hsp70 proteins (TaHsp70s; encoded by 95 genes) into six and four groups, respectively, via a phylogenetic analysis. An examination of protein structures and a multiple sequence alignment revealed diversity in the TaDnaJ structural organization, but a highly conserved J-domain, which was usually characterized by an HPD motif followed by DRD or DED motifs. The expression profiles of these HSP-encoding homologous genes varied in response to Blumeria graminis f. sp. tritici and Puccinia striiformis f. sp. tritici. A quantitative real-time PCR analysis indicated a lack of similarity in the expression of DnaJ70b, Hsp70-30b, and Hsp90-4b in wheat infected by B. graminis f. sp. tritici, although the expression levels of these genes were abnormal in the infected resistant and susceptible lines. Furthermore, a direct interaction between DnaJ70 and TaHsp70-30 was not detected in a yeast two-hybrid assay. This study revealed the structure and expression profiles of the HSP-encoding genes in wheat. The resulting data may be useful for future functional analyses and for further elucidating the roles of wheat HSPs during responses to fungal infections.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 149
Author(s):  
Chao Gong ◽  
Qiangqiang Pang ◽  
Zhiliang Li ◽  
Zhenxing Li ◽  
Riyuan Chen ◽  
...  

Under high temperature stress, a large number of proteins in plant cells will be denatured and inactivated. Meanwhile Hsfs and Hsps will be quickly induced to remove denatured proteins, so as to avoid programmed cell death, thus enhancing the thermotolerance of plants. Here, a comprehensive identification and analysis of the Hsf and Hsp gene families in eggplant under heat stress was performed. A total of 24 Hsf-like genes and 117 Hsp-like genes were identified from the eggplant genome using the interolog from Arabidopsis. The gene structure and motif composition of Hsf and Hsp genes were relatively conserved in each subfamily in eggplant. RNA-seq data and qRT-PCR analysis showed that the expressions of most eggplant Hsf and Hsp genes were increased upon exposure to heat stress, especially in thermotolerant line. The comprehensive analysis indicated that different sets of SmHsps genes were involved downstream of particular SmHsfs genes. These results provided a basis for revealing the roles of SmHsps and SmHsp for thermotolerance in eggplant, which may potentially be useful for understanding the thermotolerance mechanism involving SmHsps and SmHsp in eggplant.


Author(s):  
Mahmoud Hussien Abou-Deif ◽  
Mohamed Abdel-Salam Rashed ◽  
Kamal Mohamed Khalil ◽  
Fatma El-Sayed Mahmoud

Abstract Background Maize is one of the important cereal food crops in the world. High temperature stress causes adverse influence on plant growth. When plants are exposed to high temperatures, they produce heat shock proteins (HSPs), which may impart a generalized role in tolerance to heat stress. Proteome analysis was performed in plant to assess the changes in protein types and their expression levels under abiotic stress. The purpose of the study is to explore which proteins are involved in the response of the maize plant to heat shock treatment. Results We investigated the responses of abundant proteins of maize leaves, in an Egyptian inbred line of maize “K1”, upon heat stress through two-dimensional electrophoresis (2-DE) on samples of maize leaf proteome. 2-DE technique was used to recognize heat-responsive protein spots using Coomassie Brilliant Blue (CBB) and silver staining. In 2-D analysis of proteins from plants treated at 45 °C for 2 h, the results manifested 59 protein spots (4.3%) which were reproducibly detected as new spots where did not present in the control. In 2D for treated plants for 4 h, 104 protein spots (7.7%) were expressed only under heat stress. Quantification of spot intensities derived from heat treatment showed that twenty protein spots revealed clear differences between the control and the two heat treatments. Nine spots appeared with more intensity after heat treatments than the control, while four spots appeared only after heat treatments. Five spots were clearly induced after heat treatment either at 2 h or 4 h and were chosen for more analysis by LC-MSMS. They were identified as ATPase beta subunit, HSP26, HSP16.9, and unknown HSP/Chaperonin. Conclusion The results revealed that the expressive level of the four heat shock proteins that were detected in this study plays important roles to avoid heat stress in maize plants.


Sign in / Sign up

Export Citation Format

Share Document