scholarly journals Humic acid enhances heat stress tolerance via transcriptional activation of Heat-Shock Proteins in Arabidopsis

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joon-Yung Cha ◽  
Sang-Ho Kang ◽  
Imdad Ali ◽  
Sang Cheol Lee ◽  
Myung Geun Ji ◽  
...  

Abstract Humic acid (HA) is composed of a complex supramolecular association and is produced by humification of organic matters in soil environments. HA not only improves soil fertility, but also stimulates plant growth. Although numerous bioactivities of HA have been reported, the molecular evidences have not yet been elucidated. Here, we performed transcriptomic analysis to identify the HA-prompted molecular mechanisms in Arabidopsis. Gene ontology enrichment analysis revealed that HA up-regulates diverse genes involved in the response to stress, especially to heat. Heat stress causes dramatic induction in unique gene families such as Heat-Shock Protein (HSP) coding genes including HSP101, HSP81.1, HSP26.5, HSP23.6, and HSP17.6A. HSPs mainly function as molecular chaperones to protect against thermal denaturation of substrates and facilitate refolding of denatured substrates. Interestingly, wild-type plants grown in HA were heat-tolerant compared to those grown in the absence of HA, whereas Arabidopsis HSP101 null mutant (hot1) was insensitive to HA. We also validated that HA accelerates the transcriptional expression of HSPs. Overall, these results suggest that HSP101 is a molecular target of HA promoting heat-stress tolerance in Arabidopsis. Our transcriptome information contributes to understanding the acquired genetic and agronomic traits by HA conferring tolerance to environmental stresses in plants.

2015 ◽  
Vol 15 (3) ◽  
pp. 208-220 ◽  
Author(s):  
K. T. Ramya ◽  
Neelu Jain ◽  
Nikita Gandhi ◽  
Ajay Arora ◽  
P. K. Singh ◽  
...  

Genetic diversity and relationship of 92 bread wheat (Triticum aestivum L.) genotypes from India and exotic collections were examined using simple sequence repeat (SSR) markers and phenotypic traits to identify new sources of diversity that could accelerate the development of improved wheat varieties better suited to meet the challenges posed by heat stress in India. Genetic diversity assessed by using 82 SSR markers was compared with diversity evaluated using five physiological and six agronomic traits under the heat stress condition. A total of 248 alleles were detected, with a range of two to eight alleles per locus. The average polymorphic information content value was 0.37, with a range of 0.04 (cfd9) to 0.68 (wmc339). The heat susceptibility index was determined for grain yield per spike, and the genotypes were grouped into four categories. Two dendrograms that were constructed based on phenotypic and molecular analysis using UPGMA (unweighted pair group method with arithmetic mean) were found to be topologically different. Genotypes characterized as highly heat tolerant were distributed among all the SSR-based cluster groups. This implies that the genetic basis of heat stress tolerance in these genotypes is different, thereby enabling wheat breeders to combine these diverse sources of genetic variability to improve heat tolerance in their breeding programmes.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241966
Author(s):  
Jessica Schmidt ◽  
Melissa Garcia ◽  
Chris Brien ◽  
Priyanka Kalambettu ◽  
Trevor Garnett ◽  
...  

Drought and heat stress constrain wheat (Triticum aestivum L.) yields globally. To identify putative mechanisms and candidate genes associated with combined drought and heat stress tolerance, we developed bread wheat near-isogenic lines (NILs) targeting a quantitative trait locus (QTL) on chromosome 6B which was previously associated with combined drought and heat stress tolerance in a diverse panel of wheats. Genotyping-by-sequencing was used to identify additional regions that segregated in allelic pairs between the recurrent and the introduced exotic parent, genome-wide. NILs were phenotyped in a gravimetric platform with precision irrigation and exposed to either drought or to combined drought and heat stress from three days after anthesis. An increase in grain weight in NILs carrying the exotic allele at 6B locus was associated with thicker, greener leaves, higher photosynthetic capacity and increased water use index after re-watering. RNA sequencing of developing grains at early and later stages of treatment revealed 75 genes that were differentially expressed between NILs across both treatments and timepoints. Differentially expressed genes coincided with the targeted QTL on chromosome 6B and regions of genetic segregation on chromosomes 1B and 7A. Pathway enrichment analysis showed the involvement of these genes in cell and gene regulation, metabolism of amino acids and transport of carbohydrates. The majority of these genes have not been characterized previously under drought or heat stress and they might serve as candidate genes for improved abiotic stress tolerance.


2011 ◽  
Vol 14 (3) ◽  
pp. 332-342 ◽  
Author(s):  
Hong-Sil Park ◽  
Won-Joong Jeong ◽  
EuiCheol Kim ◽  
Youngja Jung ◽  
Jong Min Lim ◽  
...  

aBIOTECH ◽  
2021 ◽  
Author(s):  
Lv Sun ◽  
Jingjing Wen ◽  
Huiru Peng ◽  
Yingyin Yao ◽  
Zhaorong Hu ◽  
...  

AbstractWheat production requires at least ~ 2.4% increase per year rate by 2050 globally to meet food demands. However, heat stress results in serious yield loss of wheat worldwide. Correspondingly, wheat has evolved genetic basis and molecular mechanisms to protect themselves from heat-induced damage. Thus, it is very urgent to understand the underlying genetic basis and molecular mechanisms responsive to elevated temperatures to provide important strategies for heat-tolerant varieties breeding. In this review, we focused on the impact of heat stress on morphology variation at adult stage in wheat breeding programs. We also summarize the recent studies of genetic and molecular factors regulating heat tolerance, including identification of heat stress tolerance related QTLs/genes, and the regulation pathway in response to heat stress. In addition, we discuss the potential ways to improve heat tolerance by developing new technologies such as genome editing. This review of wheat responses to heat stress may shed light on the understanding heat-responsive mechanisms, although the regulatory network of heat tolerance is still ambiguous in wheat.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7312 ◽  
Author(s):  
Xueli Wan ◽  
Jie Yang ◽  
Cong Guo ◽  
Manzhu Bao ◽  
Junwei Zhang

The transcriptional activation of heat shock proteins (Hsps) by heat shock transcription factors (Hsfs) is presumed to have a pivotal role in plant heat stress (HS) response. Prunus mume is an ornamental woody plant with distinctive features, including rich varieties and colors. In this study, 18 Hsfs and 24 small Hsps (sHsps) were identified in P. mume. Their chromosomal locations, protein domains, conserved motifs, phylogenetic relationships, and exon–intron structures were analyzed and compared with Arabidopsis thaliana Hsfs or sHsps. A total of 18 PmHsf members were classified into three major classes, A, B, and C. A total of 24 PmsHsps were grouped into eight subfamilies (CI to CIII, P, endoplasmic reticulum, M, and CI- or P-related). Quantitative reverse transcription PCR analysis revealed that members of the A2, A7, and A9 groups became the prominent Hsfs after heat shock, suggesting their involvement in a key regulatory role of heat tolerance. Most of the PmsHsp genes were up-regulated upon exposure to HS. Overall, our data contribute to an improved understanding of the complexity of the P. mume Hsf and sHsp gene families, and provide a basis for directing future systematic studies investigating the roles of the Hsf and sHsp gene families.


Author(s):  
Palakolanu Sudhakar Reddy ◽  
Thammineni Chakradhar ◽  
Ramesha A. Reddy ◽  
Rahul B. Nitnavare ◽  
Srikrishna Mahanty ◽  
...  

2013 ◽  
Vol 14 (5) ◽  
pp. 9643-9684 ◽  
Author(s):  
Mirza Hasanuzzaman ◽  
Kamrun Nahar ◽  
Md. Alam ◽  
Rajib Roychowdhury ◽  
Masayuki Fujita

Sign in / Sign up

Export Citation Format

Share Document