scholarly journals Identification of prognostic gene signature associated with microenvironment of lung adenocarcinoma

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8128 ◽  
Author(s):  
Cheng Yue ◽  
Hongtao Ma ◽  
Yubai Zhou

Background Lung cancer has the highest morbidity and mortality worldwide, and lung adenocarcinoma (LADC) is the most common pathological subtype. Accumulating evidence suggests the tumor microenvironment (TME) is correlated with the tumor progress and the patient’s outcome. As the major components of TME, the tumor-infiltrated immune cells and stromal cells have attracted more and more attention. In this study, differentially expressed immune and stromal signature genes were used to construct a TME-related prognostic model for predicting the outcomes of LADC patients. Methods The expression profiles of LADC samples with clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) related to the TME of LADC were identified using TCGA dataset by Wilcoxon rank sum test. The prognostic effects of TME-related DEGs were analyzed using univariate Cox regression. Then, the least absolute shrinkage and selection operator (LASSO) regression was performed to reduce the overfit and the number of genes for further analysis. Next, the prognostic model was constructed by step multivariate Cox regression and risk score of each sample was calculated. Then, survival and Receiver Operating Characteristic (ROC) analyses were conducted to validate the model using TCGA and GEO datasets, respectively. The Kyoto Encyclopedia of Genes and Genomes analysis of gene signature was performed using Gene Set Enrichment Analysis (GSEA). Finally, the overall immune status, tumor purity and the expression profiles of HLA genes of high- and low-risk samples was further analyzed to reveal the potential mechanisms of prognostic effects of the model. Results A total of 93 TME-related DEGs were identified, of which 23 DEGs were up-regulated and 70 DEGs were down-regulated. The univariate cox analysis indicated that 23 DEGs has the prognostic effects, the hazard ratio ranged from 0.65 to 1.25 (p < 0.05). Then, seven genes were screened out from the 23 DEGs by LASSO regression method and were further analyzed by step multivariate Cox regression. Finally, a three-gene (ADAM12, Bruton Tyrosine Kinase (BTK), ERG) signature was constructed, and ADAM12, BTK can be used as independent prognostic factors. The three-gene signature well stratified the LADC patients in both training (TCGA) and testing (GEO) datasets as high-risk and low-risk groups, the 3-year area under curve (AUC) of ROC curves of three GEO sets were 0.718 (GSE3141), 0.646 (GSE30219) and 0.643 (GSE50081). The GSEA analysis indicated that highly expressed ADAM12, BTK, ERG mainly correlated with the activation of pathways involving in focal adhesion, immune regulation. The immune analysis indicated that the low-risk group has more immune activities and higher expression of HLA genes than that of the high-risk group. In sum, we identified and constructed a three TME-related DEGs signature, which could be used to predict the prognosis of LADC patients.

2021 ◽  
Author(s):  
Song Shi ◽  
Shuaijie Yang ◽  
Zhenyu Zhou ◽  
Kai Sun ◽  
Ran Tao ◽  
...  

Abstract BackgroundRNA sequencing has become a powerful tool for exploring tumor recurrence or metastasis mechanisms. In this study, we aimed to develop a signature to improve the prognostic predictions of osteosarcoma.Materials and methodsBy comparing the expression profiles between metastatic and non-metastatic samples, we obtained 57 metastatic-related gene signatures. Then we constructed a 3‐gene signature to predict the prognostic risk of osteosarcoma patients by the Cox proportional hazards regression model. The risk score derived from this signature could successfully stratify osteosarcoma patients into subgroups with different survival outcomes.ResultsPatients in the low-risk group showed more prolonged overall survival than those in the high-risk group. And the performance was validated with another independent dataset. Multivariate cox regression revealed that the risk score served as an independent risk factor. Besides, we found that patients with low-risk scores had higher expression levels of immune-related signatures, suggesting an active immune status in those patients. Using the CIBERSORT database, we further systematically analyzed the relationships between the risk score and immune cell infiltration levels, as well as the immune activation markers. Higher infiltration of immune cells (CD8 T cells, monocytes, M2 macrophages, and memory B cells) and higher levels of immune cytotoxic markers (GZMA, GMZB, IFNG, and TNF) were observed in patients in the low-risk group.ConclusionsIn summary, this 3-gene signature could be a reliable marker for prognostic evaluation and help clinicians identify high‐risk patients.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ying Ye ◽  
Qinjin Dai ◽  
Hongbo Qi

AbstractOvarian cancer (OC) is a highly malignant gynaecological tumour that has a very poor prognosis. Pyroptosis has been demonstrated in recent years to be an inflammatory form of programmed cell death. However, the expression of pyroptosis-related genes in OC and their correlations with prognosis remain unclear. In this study, we identified 31 pyroptosis regulators that were differentially expressed between OC and normal ovarian tissues. Based on these differentially expressed genes (DEGs), all OC cases could be divided into two subtypes. The prognostic value of each pyroptosis-related gene for survival was evaluated to construct a multigene signature using The Cancer Genome Atlas (TCGA) cohort. By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, a 7-gene signature was built and classified all OC patients in the TCGA cohort into a low- or high-risk group. OC patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P < 0.001). Utilizing the median risk score from the TCGA cohort, OC patients from a Gene Expression Omnibus (GEO) cohort were divided into two risk subgroups, and the low-risk group had increased overall survival (OS) time (P = 0.014). Combined with the clinical characteristics, the risk score was found to be an independent factor for predicting the OS of OC patients. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses indicated that immune-related genes were enriched and that the immune status was decreased in the high-risk group. In conclusion, pyroptosis-related genes play important roles in tumour immunity and can be used to predict the prognosis of OCs.


2021 ◽  
Author(s):  
Debao Li ◽  
Lei Wang ◽  
Guanghui Wang ◽  
Yaowen Yang ◽  
Weiyu Yang ◽  
...  

Abstract Background: Ewing sarcoma (ES) is a malignant bone or soft-tissue cancer that mainly arises in children and young adults. However, the prognosis of Ewing sarcoma remains very poor, and there is no effective prediction method. The aim of our study was to identify a prognostic model for ES patients based on prognosis-associated mRNA expression profiles. Methods: The GSE17679 dataset was downloaded from the Gene Expression Omnibus (GEO) database. Differently expressed genes (DEGs) between ES and normal control were identified using R package “limma”. A weighted gene co-expression network analysis (WGCNA) was used to screen gene modules associated with recurrence/metastasis and survival status based on DEGs. Results: The prognostic model was constructed based on genes in MEbrown module, which was most associated with recurrence/metastasis and survival status, using Kaplan-Meier survival and lasso regression analysis. Sixteen genes were screened to construct the prognostic model. ES patients were grouped into high- and low-risk groups based on the median of risk score calculated for each of them. ES patients in high-risk group have worse survival than patients in low-risk group. The AUCs (Area under the ROC curve) for 1-year, 3-year, and 6-year overall survival were 0.903, 0.995, 0.953. Conclusions: Taken together, our research constructed a prognostic model which has excellent prediction performance for overall survival of ES patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Dakui Luo ◽  
Zezhi Shan ◽  
Qi Liu ◽  
Sanjun Cai ◽  
Qingguo Li ◽  
...  

A metabolic disorder is considered one of the hallmarks of cancer. Multiple differentially expressed metabolic genes have been identified in colon cancer (CC), and their biological functions and prognostic values have been well explored. The purpose of the present study was to establish a metabolic signature to optimize the prognostic prediction in CC. The related data were downloaded from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) database, and Gene Expression Omnibus (GEO) combined with GSE39582 set, GSE17538 set, GSE33113 set, and GSE37892 set. The differentially expressed metabolic genes were selected for univariate Cox regression and lasso Cox regression analysis using TCGA and GTEx datasets. Finally, a seventeen-gene metabolic signature was developed to divide patients into a high-risk group and a low-risk group. Patients in the high-risk group presented poorer prognosis compared to the low-risk group in both TCGA and GEO datasets. Moreover, gene set enrichment analyses demonstrated multiple significantly enriched metabolism-related pathways. To sum up, our study described a novel seventeen-gene metabolic signature for prognostic prediction of colon cancer.


2021 ◽  
Author(s):  
Jing Liu ◽  
Ting Ye ◽  
Xue fang Zhang ◽  
Yong jian Dong ◽  
Wen feng Zhang ◽  
...  

Abstract Most of the malignant melanomas are already in the middle and advanced stages when they are diagnosed, which is often accompanied by the metastasis and spread of other organs.Besides, the prognosis of patients is bleak. The characteristics of the local immune microenvironment in metastatic melanoma have important implications for both tumor progression and tumor treatment. In this study, data on patients with metastatic melanoma from the TCGA and GEO datasets were selected for immune, stromal, and estimate scores, and overlapping differentially expressed genes (DEGs) were screened. A nine-IRGs prognostic model (ALOX5AP, ARHGAP15, CCL8, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22) was established by univariate COX regression, LASSO and multivariate COX regression. Receiver operating characteristic (ROC) curves were used to test the predictive accuracy of the model. Immune infiltration was analyzed by using CIBERSORT, Xcell and ssGSEA in high-risk and low-risk groups. The immune infiltration of the high-risk group was significantly lower than that of the low-risk group. Immune checkpoint analysis revealed that the expression of PDCD1, CTLA4, TIGIT, CD274, HAVR2 and LAG3 were significantly different in groups with different levels of risk scores. WGCNA analysis found that the yellow-green module contained seven genes (ALOX5AP, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22) from the nine-IRG prognostic model, of which the yellow-green module had the highest correlation with risk scores. The results of GO and KEGG suggested that the genes in the yellow-green module were mainly enriched in immune-related biological processes. Finally, we analyzed the prognostic ability and expression characteristics of ALOX5AP, ARHGAP15, CCL8, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22 in metastatic melanoma. Overall, a prognostic model for metastatic melanoma based on the characteristics of the tumor immune microenvironment was established, which was helpful for further studies.It could function well in helping people to understand the characteristics of the immune microenvironment in metastatic melanoma and to find possible therapeutic targets.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinyuan Shi ◽  
Pu Wu ◽  
Lei Sheng ◽  
Wei Sun ◽  
Hao Zhang

Abstract Background Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer (TC), accounting for more than 80% of all cases. Ferroptosis is a novel iron-dependent and Reactive oxygen species (ROS) reliant type of cell death which is distinct from the apoptosis, necroptosis and pyroptosis. Considerable studies have demonstrated that ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in PTC remains unclear. This study aims at exploring the expression of ferroptosis-related genes (FRG) and their prognostic values in PTC. Methods A ferroptosis-related gene signature was constructed using lasso regression analysis through the PTC datasets of the Cancer Genome Atlas (TCGA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the bioinformatics functions of significantly different genes (SDG) of ferroptosis. Additionally, the correlations of ferroptosis and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT database. Finally, SDG were test in clinical PTC specimens and normal thyroid tissues. Results LASSO regression model was utilized to establish a novel FRG signature with 10 genes (ANGPTL7, CDKN2A, DPP4, DRD4, ISCU, PGD, SRXN1, TF, TFRC, TXNRD1) to predicts the prognosis of PTC, and the patients were separated into high-risk and low-risk groups by the risk score. The high-risk group had poorer survival than the low-risk group (p < 0.001). Receiver operating characteristic (ROC) curve analysis confirmed the signature's predictive capacity. Multivariate regression analysis identified the prognostic signature-based risk score was an independent prognostic indicator for PTC. The functional roles of the DEGs in the TGCA PTC cohort were explored using GO enrichment and KEGG pathway analyses. Immune related analysis demonstrated that the most types of immune cells and immunological function in the high-risk group were significant different with those in the low-risk group. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) verified the SDG have differences in expression between tumor tissue and normal thyroid tissue. In addition, cell experiments were conducted to observe the changes in cell morphology and expression of signature’s genes with the influence of ferroptosis induced by sorafenib. Conclusions We identified differently expressed FRG that may involve in PTC. A ferroptosis-related gene signature has significant values in predicting the patients’ prognoses and targeting ferroptosis may be an alternative for PTC’s therapy.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11911
Author(s):  
Lei Liu ◽  
Huayu He ◽  
Yue Peng ◽  
Zhenlin Yang ◽  
Shugeng Gao

Background The prognosis of patients for lung adenocarcinoma (LUAD) is known to vary widely; the 5-year overall survival rate is just 63% even for the pathological IA stage. Thus, in order to identify high-risk patients and facilitate clinical decision making, it is vital that we identify new prognostic markers that can be used alongside TNM staging to facilitate risk stratification. Methods We used mRNA expression from The Cancer Genome Atlas (TCGA) cohort to identify a prognostic gene signature and combined this with clinical data to develop a predictive model for the prognosis of patients for lung adenocarcinoma. Kaplan-Meier curves, Lasso regression, and Cox regression, were used to identify specific prognostic genes. The model was assessed via the area under the receiver operating characteristic curve (AUC-ROC) and validated in an independent dataset (GSE50081) from the Gene Expression Omnibus (GEO). Results Our analyses identified a four-gene prognostic signature (CENPH, MYLIP, PITX3, and TRAF3IP3) that was associated with the overall survival of patients with T1-4N0-2M0 in the TCGA dataset. Multivariate regression suggested that the total risk score for the four genes represented an independent prognostic factor for the TCGA and GEO cohorts; the hazard ratio (HR) (high risk group vs low risk group) were 2.34 (p < 0.001) and 2.10 (p = 0.017). Immune infiltration estimations, as determined by an online tool (TIMER2.0) showed that CD4+ T cells were in relative abundance in the high risk group compared to the low risk group in both of the two cohorts (both p < 0.001). We established a composite prognostic model for predicting OS, combined with risk-grouping and clinical factors. The AUCs for 1-, 3-, 5- year OS in the training set were 0.750, 0.737, and 0.719; and were 0.645, 0.766, and 0.725 in the validation set. The calibration curves showed a good match between the predicted probabilities and the actual probabilities. Conclusions We identified a four-gene predictive signature which represents an independent prognostic factor and can be used to identify high-risk patients from different TNM stages of LUAD. A new prognostic model that combines a prognostic gene signature with clinical features exhibited better discriminatory ability for OS than traditional TNM staging.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Xin Zhu ◽  
Qian Zhao ◽  
Xiaoyu Su ◽  
Jinming Ke ◽  
Yunyun Yi ◽  
...  

Abstract The identification of effective signatures is crucial to predict the prognosis of acute myeloid leukemia (AML). The investigation aimed to identify a new signature for AML prognostic prediction by using the three-gene expression (octamer-binding transcription factor 4 (OCT4), POU domain type 5 transcription factor 1B (POU5F1B) and B-cell-specific Moloney murine leukemia virus integration site-1 pseudogene 1 (BMI1P1). The expressions of genes were obtained from our previous study. Only the specimens in which three genes were all expressed were included in this research. A three-gene signature was constructed by the multivariate Cox regression analyses to divide patients into high-risk and low-risk groups. Receiver operating characteristic (ROC) analysis of the three-gene signature (area under ROC curve (AUC) = 0.901, 95% CI: 0.821–0.981, P&lt;0.001) indicated that it was a more valuable signature for distinguishing between patients and controls than any of the three genes. Moreover, white blood cells (WBCs, P=0.004), platelets (PLTs, P=0.017), percentage of blasts in bone marrow (BM) (P=0.011) and complete remission (CR, P=0.027) had significant differences between two groups. Furthermore, high-risk group had shorter leukemia-free survival (LFS) and overall survival (OS) than low-risk group (P=0.026; P=0.006), and the three-gene signature was a prognostic factor. Our three-gene signature for prognosis prediction in AML may serve as a prognostic biomarker.


Author(s):  
Peng Gu ◽  
Lei Zhang ◽  
Ruitao Wang ◽  
Wentao Ding ◽  
Wei Wang ◽  
...  

Background: Female breast cancer is currently the most frequently diagnosed cancer in the world. This study aimed to develop and validate a novel hypoxia-related long noncoding RNA (HRL) prognostic model for predicting the overall survival (OS) of patients with breast cancer.Methods: The gene expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 200 hypoxia-related mRNAs were obtained from the Molecular Signatures Database. The co-expression analysis between differentially expressed hypoxia-related mRNAs and lncRNAs based on Spearman’s rank correlation was performed to screen out 166 HRLs. Based on univariate Cox regression and least absolute shrinkage and selection operator Cox regression analysis in the training set, we filtered out 12 optimal prognostic hypoxia-related lncRNAs (PHRLs) to develop a prognostic model. Kaplan–Meier survival analysis, receiver operating characteristic curves, area under the curve, and univariate and multivariate Cox regression analyses were used to test the predictive ability of the risk model in the training, testing, and total sets.Results: A 12-HRL prognostic model was developed to predict the survival outcome of patients with breast cancer. Patients in the high-risk group had significantly shorter median OS, DFS (disease-free survival), and predicted lower chemosensitivity (paclitaxel, docetaxel) compared with those in the low-risk group. Also, the risk score based on the expression of the 12 HRLs acted as an independent prognostic factor. The immune cell infiltration analysis revealed that the immune scores of patients in the high-risk group were lower than those of the patients in the low-risk group. RT-qPCR assays were conducted to verify the expression of the 12 PHRLs in breast cancer tissues and cell lines.Conclusion: Our study uncovered dozens of potential prognostic biomarkers and therapeutic targets related to the hypoxia signaling pathway in breast cancer.


2021 ◽  
Author(s):  
Fei Li ◽  
Dongcen Ge ◽  
Shu-lan Sun

Abstract Background. Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation. The aim of this study is to investigate the relationship between ferroptosis and the prognosis of lung adenocarcinoma (LUAD).Methods. RNA-seq data was collected from the LUAD dataset of The Cancer Genome Altas (TCGA) database. We used ferroptosis-related genes as the basis, and identify the differential expression genes (DEGs) between cancer and paracancer. The univariate Cox regression analysis were used to screen the prognostic-related genes. We divided the patients into training and validation sets. Then, we screened out key genes and built a 5 genes prognostic prediction model by the applications of the least absolute shrinkage and selection operator (LASSO) 10-fold cross-validation and the multi-variate Cox regression analysis. We divided the cases by the median value of risk score and validated this model in the validation set. Meanwhile, we analyzed the somatic mutations, and estimated the score of immune infiltration in the high- and low-risk groups, as well as performed functional enrichment analysis of DEGs.Results. The result revealed that the high-risk score triggered the worse prognosis. The maximum area under curve (AUC) of the training set and the validation set of in this study was 0.7 and 0.69. Moreover, we integrated the age, gender, and tumor stage to construct the composite nomogram. The charts indicated that the AUC of cases with survival time of 1, 3 and 5 years are 0.698, 0.71 and 0.73. In addition, the mutation frequency of patients in the high-risk group was higher than that in the low-risk group. Simultaneously, DEGs were mainly enriched in ferroptosis-related pathways by analyzing the functional results.Conclusion. This study constructed a novel LUAD prognosis prediction model base on 5 ferroptosis-related genes, which can provide a prognostic evaluation tool for the clinical therapeutic decision.


Sign in / Sign up

Export Citation Format

Share Document