scholarly journals Expression of extraocular opsin genes and light-dependent basal activity of blind cavefish

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8148 ◽  
Author(s):  
Noah Simon ◽  
Suguru Fujita ◽  
Megan Porter ◽  
Masato Yoshizawa

Background Animals living in well-lit environments utilize optical stimuli for detecting visual information, regulating the homeostatic pacemaker, and controlling patterns of body pigmentation. In contrast, many subterranean animal species without optical stimuli have evolved regressed binocular eyes and body pigmentation. Interestingly, some fossorial and cave-dwelling animals with regressed eyes still respond to light. These light-dependent responses may be simply evolutionary residuals or they may be adaptive, where negative phototaxis provides avoidance of predator-rich surface environments. However, the relationship between these non-ocular light responses and the underlying light-sensing Opsin proteins has not been fully elucidated. Methods To highlight the potential functions of opsins in a blind subterranean animal, we used the Mexican cave tetra to investigate opsin gene expression in the eyes and several brain regions of both surface and cave-dwelling adults. We performed database surveys, expression analyses by quantitative reverse transcription PCR (RT-qPCR), and light-dependent locomotor activity analysis using pinealectomized fish, one of the high-opsin expressing organs of cavefish. Results Based on conservative criteria, we identified 33 opsin genes in the cavefish genome. Surveys of available RNAseq data found 26 of these expressed in the surface fish eye as compared to 24 expressed in cavefish extraocular tissues, 20 of which were expressed in the brain. RT-qPCR of 26 opsins in surface and cavefish eye and brain tissues showed the highest opsin-expressing tissue in cavefish was the pineal organ, which expressed exo-rhodopsin at 72.7% of the expression levels in surface fish pineal. However, a pinealectomy resulted in no change to the light-dependent locomotor activity in juvenile cavefish and surface fish. Therefore, we conclude that, after 20,000 or more years of evolution in darkness, cavefish light-dependent basal activity is regulated by a non-pineal extraocular organ.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Canhuang Luo ◽  
Rufin VanRullen ◽  
Andrea Alamia

Abstract Alpha rhythms (∼10Hz) in the human brain are classically associated with idling activities, being predominantly observed during quiet restfulness with closed eyes. However, recent studies demonstrated that alpha (∼10Hz) rhythms can directly relate to visual stimulation, resulting in oscillations, which can last for as long as one second. This alpha reverberation, dubbed perceptual echoes (PE), suggests that the visual system actively samples and processes visual information within the alpha-band frequency. Although PE have been linked to various visual functions, their underlying mechanisms and functional role are not completely understood. In this study, we investigated the relationship between conscious perception and the generation and the amplitude of PE. Specifically, we displayed two coloured Gabor patches with different orientations on opposite sides of the screen, and using a set of dichoptic mirrors, we induced a binocular rivalry between the two stimuli. We asked participants to continuously report which one of two Gabor patches they consciously perceived, while recording their EEG signals. Importantly, the luminance of each patch fluctuated randomly over time, generating random sequences from which we estimated two impulse-response functions (IRFs) reflecting the PE generated by the perceived (dominant) and non-perceived (suppressed) stimulus, respectively. We found that the alpha power of the PE generated by the consciously perceived stimulus was comparable with that of the PE generated during monocular vision (control condition) and higher than the PE induced by the suppressed stimulus. Moreover, confirming previous findings, we found that all PEs propagated as a travelling wave from posterior to frontal brain regions, irrespective of conscious perception. All in all our results demonstrate a correlation between conscious perception and PE, suggesting that the synchronization of neural activity plays an important role in visual sampling and conscious perception.


2021 ◽  
pp. 216770262110302
Author(s):  
M. Justin Kim ◽  
Maxwell L. Elliott ◽  
Annchen R. Knodt ◽  
Ahmad R. Hariri

Past research on the brain correlates of trait anger has been limited by small sample sizes, a focus on relatively few regions of interest, and poor test–retest reliability of functional brain measures. To address these limitations, we conducted a data-driven analysis of variability in connectome-wide functional connectivity in a sample of 1,048 young adult volunteers. Multidimensional matrix regression analysis showed that self-reported trait anger maps onto variability in the whole-brain functional connectivity patterns of three brain regions that serve action-related functions: bilateral supplementary motor areas and the right lateral frontal pole. We then demonstrate that trait anger modulates the functional connectivity of these regions with canonical brain networks supporting somatomotor, affective, self-referential, and visual information processes. Our findings offer novel neuroimaging evidence for interpreting trait anger as a greater propensity to provoked action, which supports ongoing efforts to understand its utility as a potential transdiagnostic marker for disordered states characterized by aggressive behavior.


Author(s):  
Zuzana Musilova ◽  
Walter Salzburger ◽  
Fabio Cortesi

Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Alcohol ◽  
1993 ◽  
Vol 10 (6) ◽  
pp. 537-540 ◽  
Author(s):  
Timothy O. Moore ◽  
Harry L. June ◽  
Michael J. Lewis

2010 ◽  
Vol 104 (5) ◽  
pp. 2624-2633 ◽  
Author(s):  
Catherine A. Dunn ◽  
Carol L. Colby

Our eyes are constantly moving, allowing us to attend to different visual objects in the environment. With each eye movement, a given object activates an entirely new set of visual neurons, yet we perceive a stable scene. One neural mechanism that may contribute to visual stability is remapping. Neurons in several brain regions respond to visual stimuli presented outside the receptive field when an eye movement brings the stimulated location into the receptive field. The stored representation of a visual stimulus is remapped, or updated, in conjunction with the saccade. Remapping depends on neurons being able to receive visual information from outside the classic receptive field. In previous studies, we asked whether remapping across hemifields depends on the forebrain commissures. We found that, when the forebrain commissures are transected, behavior dependent on accurate spatial updating is initially impaired but recovers over time. Moreover, neurons in lateral intraparietal cortex (LIP) continue to remap information across hemifields in the absence of the forebrain commissures. One possible explanation for the preserved across-hemifield remapping in split-brain animals is that neurons in a single hemisphere could represent visual information from both visual fields. In the present study, we measured receptive fields of LIP neurons in split-brain monkeys and compared them with receptive fields in intact monkeys. We found a small number of neurons with bilateral receptive fields in the intact monkeys. In contrast, we found no such neurons in the split-brain animals. We conclude that bilateral representations in area LIP following forebrain commissures transection cannot account for remapping across hemifields.


2003 ◽  
Vol 15 (7) ◽  
pp. 1028-1038 ◽  
Author(s):  
Natalia S. Lawrence ◽  
Thomas J. Ross ◽  
Ray Hoffmann ◽  
Hugh Garavan ◽  
Elliot A. Stein

Sustained attention deficits occur in several neuropsychiatric disorders. However, the underlying neurobiological mechanisms are still incompletely understood. To that end, functional MRI was used to investigate the neural substrates of sustained attention (vigilance) using the rapid visual information processing (RVIP) task in 25 healthy volunteers. In order to better understand the neural networks underlying attentional abilities, brain regions where task-induced activation correlated with task performance were identified. Performance of the RVIP task activated a network of frontal, parietal, occipital, thalamic, and cerebellar regions. Deactivation during task performance was seen in the anterior and posterior cingulate, insula, and the left temporal and parahippocampal gyrus. Good task performance, as defined by better detection of target stimuli, was correlated with enhanced activation in predominantly right fronto-parietal regions and with decreased activation in predominantly left temporo-limbic and cingulate areas. Factor analysis revealed that these performance-correlated regions were grouped into two separate networks comprised of positively activated and negatively activated intercorrelated regions. Poor performers failed to significantly activate or deactivate these networks, whereas good performers either activated the positive or deactivated the negative network, or did both. The fact that both increased activation of task-specific areas and increased deactivation of task-irrelevant areas mediate cognitive functions underlying good RVIP task performance suggests two independent circuits, presumably reflecting different cognitive strategies, can be recruited to perform this vigilance task.


Genome ◽  
2016 ◽  
Vol 59 (8) ◽  
pp. 541-549 ◽  
Author(s):  
John S. Taylor ◽  
Thomas E. Reimchen

The Neanderthals’ northern distribution, hunting techniques, and orbit breadths suggest that they were more active in dim light than modern humans. We surveyed visual opsin genes from four Neanderthals and two other archaic hominids to see if they provided additional support for this hypothesis. This analysis was motivated by the observation that alleles responsible for anomalous trichromacy in humans are more common in northern latitudes, by data suggesting that these variants might enhance vision in mesopic conditions, and by the observation that dim light active species often have fewer opsin genes than diurnal relatives. We also looked for evidence of convergent amino acid substitutions in Neanderthal opsins and orthologs from crepuscular or nocturnal species. The Altai Neanderthal, the Denisovan, and the Ust’-Ishim early modern human had opsin genes that encoded proteins identical to orthologs in the human reference genome. Opsins from the Vindija Cave Neanderthals (three females) had many nonsynonymous substitutions, including several predicted to influence colour vision (e.g., stop codons). However, the functional implications of these observations were difficult to assess, given that “control” loci, where no substitutions were expected, differed from humans to the same extent. This left unresolved the test for colour vision deficiencies in Vindija Cave Neanderthals.


2016 ◽  
Vol 28 (7) ◽  
pp. 948-958 ◽  
Author(s):  
Tomer Livne ◽  
Moshe Bar

Recognizing objects in the environment and understanding our surroundings often depends on context: the presence of other objects and knowledge about their relations with each other. Such contextual information activates a set of medial lobe brain regions, the parahippocampal cortex and the retrosplenial complex. Both regions are more activated by single objects with a unique contextual association than by objects not associated with any specific context. Similarly they are more activated by spatially coherent arrangements of objects when those are consistent with their known spatial relations. The current study tested how context in multiple-object displays is represented in these regions in the absence of relevant spatial information. Using an fMRI slow-event-related design, we show that the precuneus (a subpart of the retrosplenial complex) is more activated by simultaneously presented contextually related objects than by unrelated objects. This suggests that the representation of context in this region is cumulative, representing integrated information across objects in the display. We discuss these findings in relation to processing of visual information and relate them to previous findings of contextual effects in perception.


2019 ◽  
Author(s):  
Aide Macias Munoz ◽  
Rabi Murad ◽  
Ali Mortazavi

Abstract Background: The evolution of opsin genes is of great interest because it can provide insight into the evolution of light detection and vision. An interesting group in which to study opsins is Cnidaria because it is a basal phylum sister to Bilateria with much visual diversity within the phylum. Hydra vulgaris (H. vulgaris) is a cnidarian with a plethora of genomic resources to characterize the opsin gene family. This eyeless cnidarian has a behavioral reaction to light, but it remains unknown which of its many opsins functions in light detection. Here, we used phylogenetics and RNA-seq to investigate the molecular evolution of opsin genes and their expression in H. vulgaris. We explored where opsin genes are located relative to each other in an improved genome assembly and where they belong in a cnidarian opsin phylogenetic tree. In addition, we used RNA-seq data from different tissues of the H. vulgaris adult body and different time points during regeneration and budding stages to gain insight into their potential functions. Results: We identified 45 opsin genes in H. vulgaris, many of which were located near each other suggesting evolution by tandem duplications. Our phylogenetic tree of cnidarian opsin genes supported previous claims that they are evolving by lineage-specific duplications. We identified two H. vulgaris genes (HvOpA1 and HvOpB1) that fall outside of the two commonly determined Hydra groups; these genes possibly have a function in nematocytes and mucous gland cells respectively. We also found opsin genes that have similar expression patterns to phototransduction genes in H. vulgaris. We propose a H. vulgaris phototransduction cascade that has components of both ciliary and rhabdomeric cascades. Conclusions: This extensive study provides an in-depth look at the molecular evolution and expression of H. vulgarisopsin genes. The expression data that we have quantified can be used as a springboard for additional studies looking into the specific function of opsin genes in this species. Our phylogeny and expression data are valuable to investigations of opsin gene evolution and cnidarian biology.


2019 ◽  
Author(s):  
Jared M. Cregg ◽  
Roberto Leiras ◽  
Alexia Montalant ◽  
Ian R. Wickersham ◽  
Ole Kiehn

Descending command neurons instruct spinal networks to execute basic locomotor functions, such as which gait and what speed. The command functions for gait and speed are symmetric, implying that a separate unknown system directs asymmetric movements—the ability to move left or right. Here we report the discovery that Chx10-lineage reticulospinal neurons act to control the direction of locomotor movements in mammals. Chx10 neurons exhibit ipsilateral projection, and can decrease spinal limb-based locomotor activity ipsilaterally. This circuit mechanism acts as the basis for left or right locomotor movements in freely moving animals: selective unilateral activation of Chx10 neurons causes ipsilateral movements whereas inhibition causes contralateral movements. Spontaneous forward locomotion is thus transformed into an ipsilateral movement by braking locomotion on the ipsilateral side. We identify sensorimotor brain regions that project onto Chx10 reticulospinal neurons, and demonstrate that their unilateral activation can impart left/right directional commands. Together these data identify the descending motor system which commands left/right locomotor asymmetries in mammals.


Sign in / Sign up

Export Citation Format

Share Document