scholarly journals Determining Soil Quality of Heavy Metal Contaminated Agricultural Field in Korea

2012 ◽  
Vol 45 (6) ◽  
pp. 1237-1241 ◽  
Author(s):  
Ju Hee Kim ◽  
Doug Young Chung ◽  
Se Jin Oh ◽  
Rog Young Kim ◽  
Jae E. Yang ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Gunjan Bisht ◽  
Sanjila Neupane

The study was conducted to evaluate soil quality and impact of brick kiln on different physicochemical parameters of soils of agricultural field, located in the vicinity of Bhaktapur, Nepal. The study was carried out by determining the physicochemical characteristics of soil, soil fertility, and heavy metal contamination of soil. During the entire study period, water absorptivity of soil ranged from 2.4 to 3.3 mg/L, pH varies from 5.885 to 7.64, and organic carbon content and organic matter varied from 0.277 to 0.93%, from 0.477% to 1.603%, respectively. Nutrient content, that is, sulfate and nitrate concentration, in the soil ranged from 0.829 to 3.764 mol/L and from 0.984 to 29.99 mol/L, respectively. The findings revealed that concentrations of heavy metals (chromium and lead) were within permissible limit, although the levels were higher in soil at 50 m and decrease farther from brick kiln. However, the physical parameters and nutrient content were deficient in soil at 50 m while increasing gradually at distances of 100 m and 150 m. The variation of result obtained for physical parameters supports the fact that quality of soil in terms of heavy metal content and nutrient content was directly proportional to the distance from the kiln; that is, the quality of soil increased with increasing distance.


2017 ◽  
Vol 229 (1) ◽  
Author(s):  
Marco Antonio León-Romero ◽  
Paula Cecilia Soto-Ríos ◽  
Munehiro Nomura ◽  
Osamu Nishimura

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Md. Tareq Bin Salam ◽  
S. M. Shahriar Zaman ◽  
S. M. Tanzim Hossen ◽  
Md. Asaduzzaman Nur

AbstractA successive 2-year (2019 and 2020) field experiment was conducted in northern Bangladesh (Rangpur district) to observe the status of soil quality and heavy metal risk due to tobacco cultivation in this area. Soil samples were collected randomly from four major sub-districts (Rangpur Sadar, Badargonj, Gangachara, and Mithapukur Upazila) where Mithapukur was a non-cultivating tobacco field and the rests were tobacco-growing fields. Along with heavy metal concentrations, physicochemical parameters were analyzed to observe the progressive change in the soil. Results depicted that values of bulk density, particle density, porosity, soil organic matter (SOM), and major nutrients (N, P, K, S) were decreased in the tobacco-growing field from 2019 to 2020, whereas significant improvement was observed in non-tobacco-growing field at successive year analysis. However, exchangeable bases were raised in the tobacco cultivated field from 40.86 to 52.98% compared to the non-tobacco cultivated field which was in a declining trend (43.66–34.33%). Overall, the soil pollution index depicted that Pb was shown a moderate risk of contamination in 2020. The ecological risk analysis also stated that the tobacco field in Rangpur Sadar was at a moderate risk of soil pollution (RI = 126.16), although the non-tobacco field in Mithapukur was at no risk of pollution (RI = 45.23). So, it can be recommended that tobacco cultivation harms the soil health, and thus, it should be prohibited from the agricultural field.


2020 ◽  
Vol 21 (3) ◽  
pp. 155-164
Author(s):  
Sweta Bhardwaj ◽  
D.R. Khanna ◽  
Mukesh Ruhela ◽  
Rakesh Bhutiani ◽  
Rahul Bhardwaj ◽  
...  

The present study aims to compare the quality of soil of different region of Haridwar with reference to physicochemical and heavy metal parameters. To fulfill the objectives of present study, soil sampling was performed in forest (control site), industrial, residential and agricultural areas in and around Haridwar. Soil samples were analyzed for different physicochemical and heavy metal parameters.  Values of all the studied soil parameters were found highest (an increase of 32% in temperature (16.63 to 21.640C), 121% in soil moisture (13.05 to 28.39%), 29.02% in soil porosity (37.56 to 49.03%), and 19.6% in the water holding capacity (36.22 to 43.58%), 74.18% in conductivity (0.25 to 0.40 µMhos/cm), and 203.78% in chloride (16.67 to 53.97mg/gm)) at the industrial area in comparison to other sites. During the course of the study, an increasing trend in all the parameters at all the sites was observed this may be due to the dumping of industrial solid waste and effluent. Although no negative impact was observed on the soil quality but continuous dumping will results in harmful impacts due to the accumulation of pollutants. Therefore there is a need for safe and proper disposal and utilization techniques to manage the enormous quantity of industrial waste. All the heavy metals (such as copper (0.050 to 0.055mg/gm), manganese (0.232 to 0.242mg/gm), nickel (0.035 to 0.036mg/gm), lead (0.039mg/gm), and iron (1.19 to 1.22) were found in higher concentration during the study period while cadmium was found absent during the study period.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Garima Awasthi ◽  
Varad Nagar ◽  
Saglara Mandzhieva ◽  
Tatiana Minkina ◽  
Mahipal Singh Sankhla ◽  
...  

The consequences of heavy metal contamination are progressively degrading soil quality in this modern period of industry. Due to this reason, improvement of the soil quality is necessary. Remediation is a method of removing pollutants from the root zone of plants in order to minimize stress and increase yield of plants grown in it. The use of plants to remove toxins from the soil, such as heavy metals, trace elements, organic chemicals, and radioactive substances, is referred to as bioremediation. Biochar and fly ash techniques are also studied for effectiveness in improving the quality of contaminated soil. This review compiles amelioration technologies and how they are used in the field. It also explains how nanoparticles are becoming a popular method of desalination, as well as how they can be employed in heavy metal phytoremediation.


2020 ◽  
Vol 12 (2) ◽  
pp. 387-398
Author(s):  
Sylvia O. OGOANAH ◽  
Uzoamaka N. NGWOKE ◽  
Edokpolor O. OHANMU ◽  
Pascal C. OKOYE ◽  
Beckley IKHAJIAGBE

The study investigated the enhancement of soil quality of an oil-polluted ultisol using livestock wastes. Top soil (0 - 10 cm) was obtained as a pooled sample and polluted with spent lubricating oil at 10% w/w. The soil was subsequently amended with sun-dried goat (GT), rabbit (RB), and poultry (PG) dung at 10% w/w on dry weight basis both in singles, double-mixed, and triple-mixed combinations. Twelve weeks after treatment application, results showed that there was a 93.9% decrease (p<0.05) in bacterial colony count in the oil-polluted soil compared to the control. Penicillium notatum and Aspergillus niger as well as Bacillus sp. and Proteus sp. were the prominent fungal and bacterial species identified respectively. The most abundant plant in the soil seed bank was Panicum maximum with 10.4% abundance and this showed possible involvement of the plant in remediation of oil-pollution. The total hydrocarbon content of the oil-polluted soil was 9984.0 mg/kg, compared to 3170.6 mg/kg when amended with RB+GT, implying 76.77% remediation efficiency. Among several trials employed in this study, the combination of rabbit and goat wastes proved to be more effective in reducing the total hydrocarbon content of oil-polluted soil and therefore, is recommended as a potential candidate for application in the bioremediation of such soil.


PLoS ONE ◽  
2010 ◽  
Vol 5 (9) ◽  
pp. e12346 ◽  
Author(s):  
John P. Reganold ◽  
Preston K. Andrews ◽  
Jennifer R. Reeve ◽  
Lynne Carpenter-Boggs ◽  
Christopher W. Schadt ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document