scholarly journals Software Platform for the Assisted Research of the Kinematics and Dynamics of Industrial Robots

Author(s):  
Olaru A. ◽  
◽  
Dobrescu T. ◽  
Olaru S. ◽  
Mihai I.

The paper presents a software platform made with LabVIEWTM for the assisted research of the kinematic and dynamic behavior of industrial robots. The platform comprises a series of virtual instrumentation LabVIEWTM programs (subVI-s) with: the input data modules in the form of several clusters with the parameters of the trapezoidal velocity characteristics of each joint, the axes of movement and the type of each joints, the dimensions of each body, the graph associated to the robot’s structure, the incidence matrices bodies - joints and joints- bodies, as well as the control buttons for movement up or down with or without object in the end- effecter, some modules with 2D characteristics of positions, velocities, accelerations, forces and moments in each joints and also the 3D characteristics of them. The research of the current stage shows that such a complex platform like this was not realized, the current research being limited to the animation of motion trajectories, determining the characteristics of positions, velocities, accelerations, forces and moments without the possibility of changing all motion parameters and robot’s dimensions and without show how these parameters change the behavior. The paper studies the case of an articulated arm type robot, but the platform can be used for any type of robot with four degrees of freedom (DOF).

2020 ◽  
Vol 36 (3) ◽  
pp. 285-294
Author(s):  
Ngoc Anh Mai ◽  
Xuan Bien Duong

An algorithm for improving feeding rates of industrial welding robot TA 1400 of Panasonic with 6 degrees of freedom is presented. The kinematics and dynamics of the robot are calculated on MATLAB software. The proposed algorithm for improving feeding rates is mathematically analyzed and the performance of the system is evaluated in a simulation environment. The simulation results are used for proving the efficiency of the solution. Based on the achieved results, the algorithm can be applied for reducing time and improving the productivity of other industrial robots in the future


Author(s):  
A. Meghdari ◽  
H. Sayyaadi

Abstract An optimization technique based on the well known Dynamic Programming Algorithm is applied to the motion control trajectories and path planning of multi-jointed fingers in dextrous hand designs. A three fingered hand with each finger containing four degrees of freedom is considered for analysis. After generating the kinematics and dynamics equations of such a hand, optimum values of the joints torques and velocities are computed such that the finger-tips of the hand are moved through their prescribed trajectories with the least time or/and energy to reach the object being grasped. Finally, optimal as well as feasible solutions for the multi-jointed fingers are identified and the results are presented.


Author(s):  
Danming Wei ◽  
Alireza Tofangchi ◽  
Andriy Sherehiy ◽  
Mohammad Hossein Saadatzi ◽  
Moath Alqatamin ◽  
...  

Abstract Industrial robots, as mature and high-efficient equipment, have been applied to various fields, such as vehicle manufacturing, product packaging, painting, welding, and medical surgery. Most industrial robots are only operating in their own workspace, in other words, they are floor-mounted at the fixed locations. Just some industrial robots are wall-mounted on one linear rail based on the applications. Sometimes, industrial robots are ceiling-mounted on an X-Y gantry to perform upside-down manipulation tasks. The main objective of this paper is to describe the NeXus, a custom robotic system that has been designed for precision microsystem integration tasks with such a gantry. The system tasks include assembly, bonding, and 3D printing of sensor arrays, solar cells, and microrobotic prototypes. The NeXus consists of a custom designed frame, providing structural rigidity, a large overhead X-Y gantry carrying a 6 degrees of freedom industrial robot, and several other precision positioners and processes. We focus here on the design and precision evaluation of the overhead ceiling-mounted industrial robot of NeXus and its supporting frame. We first simulated the behavior of the frame using Finite Element Analysis (FEA), then experimentally evaluated the pose repeatability of the robot end-effector using three different types of sensors. Results verify that the performance objectives of the design are achieved.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840079
Author(s):  
Wensheng Huang ◽  
Hongli Xu

The application of machine vision to industrial robots is a hot topic in robot research nowadays. A welding robot with machine vision had been developed, which is convenient and flexible to reach the welding point with six degrees-of-freedom (DOF) manipulator, while the singularity of its movement trail is prevented, and the stability of the mechanism had been fully guaranteed. As the precise industry camera can capture the optical feature of the workpiece to reflect in the camera’s CCD lens, the workpiece is identified and located through a visual pattern recognition algorithm based on gray scale processing, on the gradient direction of edge pixel or on geometric element so that high-speed visual acquisition, image preprocessing, feature extraction and recognition, target location are integrated and hardware processing power is improved. Another task is to plan control strategy of control system, and the upper computer software is programmed in order that multi-axis motion trajectory is optimized and servo control is accomplished. Finally, prototype was developed and validation experiments show that the welding robot has high stability, high efficiency, high precision, even if welding joints are random and workpiece contour is irregular.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zubair Iqbal ◽  
Maria Pozzi ◽  
Domenico Prattichizzo ◽  
Gionata Salvietti

Collaborative robots promise to add flexibility to production cells thanks to the fact that they can work not only close to humans but also with humans. The possibility of a direct physical interaction between humans and robots allows to perform operations that were inconceivable with industrial robots. Collaborative soft grippers have been recently introduced to extend this possibility beyond the robot end-effector, making humans able to directly act on robotic hands. In this work, we propose to exploit collaborative grippers in a novel paradigm in which these devices can be easily attached and detached from the robot arm and used also independently from it. This is possible only with self-powered hands, that are still quite uncommon in the market. In the presented paradigm not only hands can be attached/detached to/from the robot end-effector as if they were simple tools, but they can also remain active and fully functional after detachment. This ensures all the advantages brought in by tool changers, that allow for quick and possibly automatic tool exchange at the robot end-effector, but also gives the possibility of using the hand capabilities and degrees of freedom without the need of an arm or of external power supplies. In this paper, the concept of detachable robotic grippers is introduced and demonstrated through two illustrative tasks conducted with a new tool changer designed for collaborative grippers. The novel tool changer embeds electromagnets that are used to add safety during attach/detach operations. The activation of the electromagnets is controlled through a wearable interface capable of providing tactile feedback. The usability of the system is confirmed by the evaluations of 12 users.


Author(s):  
Eik Siggelkow ◽  
Iris Sauerberg ◽  
Francesco Benazzo ◽  
Marc Bandi

Passive knee kinematics and kinetics following total knee replacement (TKR) are dependent on the topology of the component joint surfaces as well as the properties of the passive soft tissue structures (ligaments and capsule). Recently, explicit computer models have been used for the prediction of knee joint kinematics based on experimental investigations [1]. However, most of these models replicate experimental knee simulators [2], which simulate soft tissue structures using springs or elastomeric structures. New generations of experimental setups deploy industrial robots for measuring kinematics and kinetics in six degrees of freedom as well as the contribution of soft tissue structures. Based on these experiments, accurate soft tissue properties are available for use in computer models to aid more realistic predictions of kinematics. Final evidence of the quality of the kinematic predictions from these computer models can be provided by direct validation of the models against experimental data. Therefore, the objective of this study was to use in vitro robotic test data to develop, verify, and validate specimen specific virtual models suitable for predicting laxity and kinematics of the reconstructed knee.


Author(s):  
Wanqiang Xi ◽  
Yaoyao Wang ◽  
Bai Chen ◽  
Hongtao Wu

For the repetitive motion control, inaccurate model, and other issues of industrial robots, this article presents a novel control method that the proportion differentiation-type iterative learning parameters are self-tuning based on artificial bee colony algorithm. Considering the influence of the numerical value of iterative learning parameters on the control system, especially in the early iteration, the control effect is not satisfactory. Thus, the artificial bee colony algorithm is introduced in this article. Using bee colony as search unit, the parameters in iterative learning are optimized through the exchange of information and the survival of fittest between them. And then the optimized results are returned to iterative learning control algorithm. Finally, the digital simulation of a two-degrees-of-freedom manipulator and the experimental verification of a cable-driven robot with its first two joints are carried out. The results show that the iterative learning control based on the artificial bee colony algorithm has faster convergence and better control effect than the iterative learning control with fixed parameters.


1986 ◽  
Vol 39 (9) ◽  
pp. 1331-1338 ◽  
Author(s):  
Yoram Koren

The principal control structure of CNC machine tools and industrial robots is similar, since in both systems each axis of motion is separately controlled with a position feedback loop. Nevertheless, the control of robots is more complex, since they include more degrees of freedom and the motion of each joint is not independent of other joints. This paper compares the conventional control schemes of both systems, and summarizes recent developments in adaptive control of machine tools and robots.


2017 ◽  
Vol 14 (3) ◽  
pp. 172988141771663 ◽  
Author(s):  
You Wu ◽  
Zhen Yang ◽  
Zhuang Fu ◽  
Jian Fei ◽  
Hui Zheng

Sign in / Sign up

Export Citation Format

Share Document