scholarly journals Association between Human Health and Indoor Air Pollution in Saudi Arabia: Indoor Environmental Quality Survey

Author(s):  
Mohd Saleem ◽  
Mohd Adnan Kausar ◽  
Fahmida Khatoon ◽  
Sadaf Anwar ◽  
Syed Monowar Alam Shahid ◽  
...  

In many aspects of life quality, bio-contaminants and indoor air quality have had catastrophic consequences, including a negative impact on human health with an increased prevalence of allergic respiratory reactions, asthma, and infectious diseases. We aimed to evaluate the quality of indoor air environment and find out the association between human health and indoor air pollution and also to assess the physical health status of a group of Saudi and non-Saudi populations during this pandemic. Also, we aimed to assess the most common health condition or symptoms associated with ventilation. A questionnaire was distributed online to test indoor air quality, ventilation status, common signs and symptoms of any allergy or mental status and their relationship to certain variables. A total of 362 respondents were included. Before living in the current home, flu or Influenza and chapped lips were more prevalent than allergies and chapped lips signs while living in the current home. (12.2% , 10.8% vs. 18.5% , 13.55% before and after respectively) Multiple colds were the second most common symptom (10.2%). Hoarse voice and headaches were the least common symptoms experienced; each constituted 4.4%. During the COVID-19 Pandemic, most respondents wore a facemask, approximately 76.5%; and almost one-third of respondents had bright natural light inside the current home (43.1%). The presence of natural light within the current home was significantly associated with symptoms experienced during living in the current house (p<0.05). Natural sunlight exposure could decrease allergic symptoms and minor health problems associated with poor ventilation and air quality indoors. In current living homes, the majority of respondents never used air purifiers (72.9 percent). In order to get attention from people to enhance the quality and ventilation mechanism of indoor air, special care and awareness of the effects of the use of air purifiers on human health is needed.

Author(s):  
Avesahemad SN Husainy ◽  

Every coin has two sides. Likewise, as we are progressing towards the era of technology and industrialization; a lot of worst effects are arising as well. Along with the ecosystem, human health is suffering from some adverse issues because of pollution. We have heard about outdoor air pollution but indoor air pollution is even more harmful to human health. It is being observed that Indoor Air Quality (IAQ) is getting worse day by day leading to many lung diseases, breathing issues, low birth rate, eye-related diseases, perinatal conditions, etc. Hence these issues have to be considered before getting too late. Indoor air quality varies from regions i.e. in the case of developed countries; cooling-heating appliances, electric devices, petroleum products, etc. are the major contributors to deplete IAQ. While in case of developing countries which have a huge number of rural areas; biomass open fires, traditional cooking systems with direct fire expose or indoor stove, etc. are the major factors behind damaged indoor air quality. Generally, children and aged persons spend most of their time inside the house. These people have low immunity hence they get easily affected by depleted IAQ and face many health-related issues. There is a long list of harmful pollutants like NOX, COX, SOX, organic matter, etc. that play a significant role in damaging air quality. A ventilation system is essential in offices, theatres, malls, homes, etc. but the occupant devices lower the air quality index. Likewise, green-house effects increase the percentage of COX which damages nature and human health as well. All these factors, parameters, adverse effects and solutions are studied in this paper.


2012 ◽  
Vol 506 ◽  
pp. 23-26
Author(s):  
P.A.F. Rodrigues ◽  
S.I.V. Sousa ◽  
Maria José Geraldes ◽  
M.C.M. Alvim-Ferraz ◽  
F.G. Martins

Several factors affect the indoor air quality, among which ventilation, human occupancy, cleaning products, equipment and material; they might induce the presence of aerosols (or bioaerosols in the presence of biological components) nitrogen oxides, ozone, carbon monoxide and dioxide, volatile organic compounds, radon and microorganisms. Microbiological pollution involves hundreds of bacteria and fungi species that grow indoors under specific conditions of temperature and humidity. Exposure to microbial contaminants is clinically associated with allergies, asthma, immune responses and respiratory infections, such as Legionnaires Disease and Pontiac Feaver, which are due to contamination byLegionella pneumophila. Legionnaire's Disease has increased over the past decade, because of the use of central air conditioning. In places such as homes, kindergartens, nursing homes and hospitals, indoor air pollution affects population groups that are particularly vulnerable because of their health status or age, making indoor air pollution a public health issue of high importance. Therefore, the implementation of preventive measures, as the application of air filters, is fundamental. Currently, High Efficiency Particulate Air (HEPA) filters are the most used to capture microorganisms in ventilation, filtration and air conditioning systems; nevertheless, as they are not completely secure, new filters should be developed. This work aims to present how the efficiency of a textile nanostructure in a non-woven material based on synthetic textiles (high hydrophobic fibers) incorporating appropriate biocides to controlLegionella pneumophila, is going to be measured. These bioactive structures, to be used in ventilation systems, as well as in respiratory protective equipment, will reduce the growth of microorganisms in the air through bactericidal or bacteriostatic action. The filter nanostructure should have good air permeability, since it has to guarantee minimum flows of fresh air for air exchange as well as acceptable indoor air quality.


2020 ◽  
Vol XXIII (2) ◽  
pp. 59-63
Author(s):  
Avram Elena Rita

The present paper will be focused on analyzing the factors that influence indoor air qualityof the ship cabins and the hyperbaric chambers taking into account the specific degree of pollution, as oxidation of metal surfaces, vaporization, nature of the paints used, respiration, gases or particles coming from the combustion of fuels, chemicals, and allergens. The article will present a synthesis of the influence of characteristic parameters, such as ventilation rate and exposure to mold or chemicals on indoor air quality, as this is strictly and directly related to health, comfort, and ability to work.


2021 ◽  
Vol 111 ◽  
pp. 420-424
Author(s):  
Michael Greenstone ◽  
Kenneth Lee ◽  
Harshil Sahai

In Delhi, one of the world's most polluted cities, there is relatively little information on indoor air pollution and how it varies by socioeconomic status (SES). Using indoor air quality monitors (IAQMs), we find that winter levels of household air pollution exceed World Health Organization standards by more than 20 times in both high-and low-SES households. We then evaluate a field experiment that randomly assigned monthlong IAQM user trials across medium-and high-SES households but suffered from significant survey non-response. Among respondents, IAQMs did not affect take-up of subsidized air purifier rentals or other defensive behavior.


Author(s):  
Manoj Gurung

Abstract: Degradation of air quality, like climate change and global warming, has become an all-encompassing existential hazard to humanity and natural life. Exposure to severely polluted air on a regular basis causes pulmonary disorders and contributes to severe allergies and asthma. According to studies, more than 10 million people die each year as a result of irregularities produced directly or indirectly by air pollution. The work of Lelieveld et al. [1] sheds light on the gravity of the problem. It is estimated that by 2050, the worldwide premature mortality from air pollution will exceed 6.6 million fatalities per year (358000 from ozone, the rest from PM 2.5) [1]. As a result, we decided to focus our study on improving indoor air quality. Despite the fact that there are numerous indoor air purifiers on the market, their cost belies their effectiveness, and the effective ones are far too expensive for working-class people to afford [2]. In order to address this issue, we created an automated Internet of Things (IoT) based air filtration system that uses an automated air purifier which is triggered when air quality falls below WHO criteria. Our initiative intends to improve indoor air quality by utilizing the most cost-effective and efficient modules available. Keywords: Indoor Air Pollution, Air Purifier, IAQ, Sharp Dust Sensor GP2Y1010AU0F, IoT, Particulate Matter (PM), HEPA Filter


2019 ◽  
Vol 41 (4) ◽  
pp. 441-453
Author(s):  
Mohd Firrdhaus Mohd Sahabuddin ◽  
Stirling Howieson

Indoor air pollution has proven negative impacts on the urban population in many developing countries. In Kuala Lumpur, high-rise housing programmes are not addressing IAQ and thermal comfort. As household incomes rise, residents are resorting to retro-fitting wall mounted split, air conditioning units; a strategy that is neither cost nor carbon effective. This paper reports on the results of computer modelling in conjunction with scale model trials (1:5) of a ‘Dynamic-Hybrid Air Permeable Ceiling’ (DHAPC) designed to filter, cool and dehumidify, the incoming air mass. This filter membrane, when combined with activated charcoal, reduced carbon monoxide, sulphur dioxide, benzene and particulate levels by up to 90%. These techniques now require to be replicated at 1:1 scale; however, the initial data suggest that such an approach, could make a major contribution to improving indoor air quality and thermal comfort with a much reduced carbon penalty. Practical application: Air pollution is now being recognised as having major negative impacts on public health. The use of insulation, as a large area and volume air filter, would appear to be a highly effective technique to reduce particulate matter, and when combined with activated charcoal that absorbs/adsorbs toxic gasses, can significantly improve indoor air quality in cities across the world that are presently exceeding WHO air quality guidelines.


2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Chua Poh Choo ◽  
Juliana Jalaludin

AbstractThe indoor environment is a major source of human exposure to pollutants. Some pollutants can have concentrations that are several times higher indoors than outdoors. Prolonged exposure may lead to adverse biologic effects, even at low concentrations. Several studies done in Malaysia had underlined the role of indoor air pollution in affecting respiratory health, especially for school-aged children. A critical review was conducted on the quantitative literature linking indoor air pollution with respiratory illnesses among school-aged children. This paper reviews evidence of the association between indoor air quality (IAQ) and its implications on respiratory health among Malaysian school-aged children. This review summarizes six relevant studies conducted in Malaysia for the past 10 years. Previous epidemiologic studies relevant to indoor air pollutants and their implications on school-aged children’s respiratory health were obtained from electronic database and included as a reference in this review. The existing reviewed data emphasize the impact of IAQ parameters, namely, indoor temperature, ventilation rates, indoor concentration of carbon dioxide (CO


2016 ◽  
Vol 11 (4) ◽  
pp. 284-295 ◽  
Author(s):  
Joseph M. Seguel ◽  
Richard Merrill ◽  
Dana Seguel ◽  
Anthony C. Campagna

Many health care providers are concerned with the role environmental exposures play in the development of respiratory disease. While most individuals understand that outdoor air quality is important to their health status, many are unaware of the detrimental effects indoor air pollution can potentially have on them. The Environmental Protection Agency (EPA) regulates both outdoor and indoor air quality. According to the EPA, indoor levels of pollutants may be up to 100 times higher than outdoor pollutant levels and have been ranked among the top 5 environmental risks to the public. There has been a strong correlation between air quality and health, which is why it is crucial to obtain a complete environmental exposure history from a patient. This article focuses on the effects indoor air quality has on the respiratory system. Specifically, this article will address secondhand smoke, radon, carbon monoxide, nitrogen dioxide, formaldehyde, house cleaning agents, indoor mold, animal dander, and dust mites. These are common agents that may lead to hazardous exposures among individuals living in the United States. It is important for health care providers to be educated on the potential risks of indoor air pollution and the effects it may have on patient outcomes. Health problems resulting from poor indoor air quality are not easily recognized and may affect a patient’s health years after the onset of exposure.


2011 ◽  
Vol 356-360 ◽  
pp. 1719-1722
Author(s):  
Jun Liu ◽  
Yu Guo Zhuo

New green theory is put forward that indoor air pollution is controlled by overall process based on the residential interior decoration and air pollution status in China, as indoor air quality becomes important more and more. According to the concept of healthy house to control indoor air pollution through four steps that are green interior design, selecting environmental materials, green decoration and green ornament safe, healthy and environmental green home could be realized.


Sign in / Sign up

Export Citation Format

Share Document