Dataset for Artificial Intelligence Supervised Learning on HS Code and Device Code of Small Home Appliance

Author(s):  
Young-joo Oh ◽  
Dea-woo Park
2021 ◽  
Vol 11 (11) ◽  
pp. 4726
Author(s):  
Muhammad Ayaz Shirazi ◽  
Riaz Uddin ◽  
Min-Young Kim

Video display content can be extended to the walls of the living room around the TV using projection. The problem of providing appropriate projection content is hard for the computer and we solve this problem with deep neural network. We propose the peripheral vision system that provides the immersive visual experiences to the user by extending the video content using deep learning and projecting that content around the TV screen. The user may manually create the appropriate content for the existing TV screen, but it is too expensive to create it. The PCE (Pixel context encoder) network considers the center of the video frame as input and the outside area as output to extend the content using supervised learning. The proposed system is expected to pave a new road to the home appliance industry, transforming the living room into the new immersive experience platform.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Gulshan Kumar ◽  
Krishan Kumar

In supervised learning-based classification, ensembles have been successfully employed to different application domains. In the literature, many researchers have proposed different ensembles by considering different combination methods, training datasets, base classifiers, and many other factors. Artificial-intelligence-(AI-) based techniques play prominent role in development of ensemble for intrusion detection (ID) and have many benefits over other techniques. However, there is no comprehensive review of ensembles in general and AI-based ensembles for ID to examine and understand their current research status to solve the ID problem. Here, an updated review of ensembles and their taxonomies has been presented in general. The paper also presents the updated review of various AI-based ensembles for ID (in particular) during last decade. The related studies of AI-based ensembles are compared by set of evaluation metrics driven from (1) architecture & approach followed; (2) different methods utilized in different phases of ensemble learning; (3) other measures used to evaluate classification performance of the ensembles. The paper also provides the future directions of the research in this area. The paper will help the better understanding of different directions in which research of ensembles has been done in general and specifically: field of intrusion detection systems (IDSs).


Now days, Machine learning is considered as the key technique in the field of technologies, such as, Internet of things (IOT), Cloud computing, Big data and Artificial Intelligence etc. As technology enhances, lots of incorrect and redundant data are collected from these fields. To make use of these data for a meaningful purpose, we have to apply mining or classification technique in the real world. In this paper, we have proposed two nobel approaches towards data classification by using supervised learning algorithm


Author(s):  
Pallab Banerjee ◽  
Biresh Kumar ◽  
Amarnath Singh ◽  
Priyeta Ranjan ◽  
Kunal Soni

This research aims to study the predictive analysis, which is a method of analysis in Machine Learning. Many companies like Ola, Uber etc uses Artificial Intelligence and machine learning technologies to find the solution of accurate fare prediction problem. We are proposing this paper after comparative analysis of algorithms like regression and classification, which are useful for prediction modeling to get the most accurate value. This research will be helpful to those, who are involved in fare forecasting. In previous era, the fare was only dependent on distance, but with the enhancement in technologies the cab’s fare is dependent on a lot of factors like time, location, number of passengers, traffic, number of hours, base fare etc. The study is based on Supervised learning whose one application is prediction, in machine learning.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Yu ◽  
Kai Sun ◽  
Chao Xu ◽  
Xing-Hua Shi ◽  
Chong Wu ◽  
...  

AbstractMachine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice.


2012 ◽  
pp. 695-703
Author(s):  
George Tzanis ◽  
Christos Berberidis ◽  
Ioannis Vlahavas

Machine learning is one of the oldest subfields of artificial intelligence and is concerned with the design and development of computational systems that can adapt themselves and learn. The most common machine learning algorithms can be either supervised or unsupervised. Supervised learning algorithms generate a function that maps inputs to desired outputs, based on a set of examples with known output (labeled examples). Unsupervised learning algorithms find patterns and relationships over a given set of inputs (unlabeled examples). Other categories of machine learning are semi-supervised learning, where an algorithm uses both labeled and unlabeled examples, and reinforcement learning, where an algorithm learns a policy of how to act given an observation of the world.


Author(s):  
George Tzanis ◽  
Christos Berberidis ◽  
Ioannis Vlahavas

Machine learning is one of the oldest subfields of artificial intelligence and is concerned with the design and development of computational systems that can adapt themselves and learn. The most common machine learning algorithms can be either supervised or unsupervised. Supervised learning algorithms generate a function that maps inputs to desired outputs, based on a set of examples with known output (labeled examples). Unsupervised learning algorithms find patterns and relationships over a given set of inputs (unlabeled examples). Other categories of machine learning are semi-supervised learning, where an algorithm uses both labeled and unlabeled examples, and reinforcement learning, where an algorithm learns a policy of how to act given an observation of the world.


Author(s):  
Ahmad Roihan ◽  
Po Abas Sunarya ◽  
Ageng Setiani Rafika

Abstrak - Pembelajaran mesin merupakan bagian dari kecerdasan buatan yang banyak digunakan untuk memecahkan berbagai masalah. Artikel ini menyajikan ulasan pemecahan masalah dari penelitian-penelitian terkini dengan mengklasifikasikan machine learning menjadi tiga kategori: pembelajaran terarah, pembelajaran tidak terarah, dan pembelajaran reinforcement. Hasil ulasan menunjukkan ketiga kategori masih berpeluang digunakan dalam beberapa kasus terkini dan dapat ditingkatkan untuk mengurangi beban komputasi dan mempercepat kinerja untuk mendapatkan tingkat akurasi dan presisi yang tinggi. Tujuan ulasan artikel ini diharapkan dapat menemukan celah dan dijadikan pedoman untuk penelitian pada masa yang akan datang.Katakunci: pembelajaran mesin, pembelajaran reinforcement, pembelajaran terarah, pembelajaran tidak terarahAbstract - Machine learning is part of artificial intelligence that is widely used to solve various problems. This article reviews problem solving from the latest studies by classifying machine learning into three categories: supervised learning, unsupervised learning, and reinforcement learning. The results of the review show that the three categories are still likely to be used in some of the latest cases and can be improved to reduce computational costs and accelerate performance to get a high level of accuracy and precision. The purpose of this article review is expected to be able to find a gap and it is used as a guideline for future research.Keywords: machine learning, reinforcement learning, supervised learning, unsupervised learning


Sign in / Sign up

Export Citation Format

Share Document