Latching Control Technology for Improvement of Extracted Power from Wave Energy Converter

Author(s):  
Il Hyoung Cho
Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3036 ◽  
Author(s):  
Simon Thomas ◽  
Mikael Eriksson ◽  
Malin Göteman ◽  
Martyn Hann ◽  
Jan Isberg ◽  
...  

A challenge while applying latching control on a wave energy converter (WEC) is to find a reliable and robust control strategy working in irregular waves and handling the non-ideal behavior of real WECs. In this paper, a robust and model-free collaborative learning approach for latchable WECs in an array is presented. A machine learning algorithm with a shallow artificial neural network (ANN) is used to find optimal latching times. The applied strategy is compared to a latching time that is linearly correlated with the mean wave period: It is remarkable that the ANN-based WEC achieved a similar power absorption as the WEC applying a linear latching time, by applying only two different latching times. The strategy was tested in a numerical simulation, where for some sea states it absorbed more than twice the power compared to the uncontrolled WEC and over 30% more power than a WEC with constant latching. In wave tank tests with a 1:10 physical scale model the advantage decreased to +3% compared to the best tested constant latching WEC, which is explained by the lower advantage of the latching strategy caused by the non-ideal latching of the physical power take-off model.


2021 ◽  
Vol 236 ◽  
pp. 109512
Author(s):  
Changhai Liu ◽  
Min Hu ◽  
Zhixue Zhao ◽  
Yishan Zeng ◽  
Wenzhi Gao ◽  
...  

2016 ◽  
Vol 90 ◽  
pp. 229-241 ◽  
Author(s):  
J.C.C. Henriques ◽  
L.M.C. Gato ◽  
A.F.O. Falcão ◽  
E. Robles ◽  
F.-X. Faÿ

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1233
Author(s):  
Sunny Kumar Poguluri ◽  
Dongeun Kim ◽  
Yoon Hyeok Bae

A performance assessment of wave power absorption characteristics of isolated and multiple wave energy converter (WEC) rotors was presented in this study for various wave-heading angles and wave frequencies. Numerical hydrodynamic analysis of the WEC was carried out using the three-dimensional linear boundary element method (BEM) and nonlinear computational fluid dynamics (CFD). Experimental results were used to validate the adopted numerical models. Influence with and without power take-off (PTO) was estimated on both isolated and multiple WEC rotors. Furthermore, to investigate the interaction effect among WECs, a q-factor was used. Incorporation of viscous and PTO damping into the linear BEM solution shows the maximum reduction focused around peak frequency but demonstrated an insignificant effect elsewhere. The q-factor showed both constructive and destructive interactions with the increase of the wave-heading angle and wave frequencies. Further investigation based on the prototype WEC rotor was carried, and calculated results of the linear BEM and the nonlinear CFD were compared. The pitch response and q-factor of the chosen wave frequencies demonstrated satisfactory consistency between the linear BEM and nonlinear CFD results, except for some wave frequencies. Estimated optimal time-averaged power using linear BEM show that the maximum extracted power close to the zero wave-heading angle around the resonance frequency decreases as the wave-heading angle increases. Overall, the linear BEM on the extracted power is overestimated compared with the nonlinear CFD results.


Author(s):  
Adetoso Justus Afonja ◽  
Stefano Brizzolara

Abstract This paper describes the concept design and preliminary dynamic analysis of a pitching wave energy converter (WEC) device, based on a pitching resonant floater, a pitch resonance tuning tank system and Wells turbines in regular head waves. The device has a bow/stern symmetry, which gives an advantage of the U-tank been strongly coupled with the floater in the pitch degree of freedom and both chambers will have their separate pneumatic turbines. The integrated dynamic model coupling the U-tank system as given with the motion of the floating body in regular waves and the power take off (PTO) device is physically and mathematically defined. This coupling effectively creates a multi-body dynamic system and thus alters the motion response amplitude operator of the device in waves creating multiple resonance peaks. The integrated dynamic model is solved in time domain to account for non-linearities. Excitation, radiation and diffraction forces are calculated in frequency domain from a 3D boundary element method (BEM) and corrected by Cummins equation (convolution integral) for memory effects to be used in the time domain solution. The time dependent motion of the free surface creates a pressure difference inside the chamber with respect to the atmosphere which is used by the PTO turbine. The dynamic model of the integrated system is used to predict the maximum extracted power for a given incident wave power. A systematic study, considering a change in PTO damping is performed to search for the maximum extracted power in any given regular wave condition.


Sign in / Sign up

Export Citation Format

Share Document