Design of 3D nanomagnetic logic circuits: A full-adder case study

Author(s):  
Robert Perricone ◽  
X. Sharon Hu ◽  
Joseph Nahas ◽  
Michael Niemier
2018 ◽  
Vol 8 (4) ◽  
pp. 37 ◽  
Author(s):  
Giovanna Turvani ◽  
Laura D’Alessandro ◽  
Marco Vacca

Among all “beyond CMOS” solutions currently under investigation, nanomagnetic logic (NML) technology is considered to be one of the most promising. In this technology, nanoscale magnets are rectangularly shaped and are characterized by the intrinsic capability of enabling logic and memory functions in the same device. The design of logic architectures is accomplished by the use of a clocking mechanism that is needed to properly propagate information. Previous works demonstrated that the magneto-elastic effect can be exploited to implement the clocking mechanism by altering the magnetization of magnets. With this paper, we present a novel clocking mechanism enabling the independent control of each single nanodevice exploiting the magneto-elastic effect and enabling high-speed NML circuits. We prove the effectiveness of this approach by performing several micromagnetic simulations. We characterized a chain of nanomagnets in different conditions (e.g., different distance among cells, different electrical fields, and different magnet geometries). This solution improves NML, the reliability of circuits, the fabrication process, and the operating frequency of circuits while keeping the energy consumption at an extremely low level.


2009 ◽  
Vol 18 (02) ◽  
pp. 311-323 ◽  
Author(s):  
MAJID HAGHPARAST ◽  
MAJID MOHAMMADI ◽  
KEIVAN NAVI ◽  
MOHAMMAD ESHGHI

Reversible logic circuits have received significant attention in quantum computing, low power CMOS design, optical information processing, DNA computing, bioinformatics, and nanotechnology. This paper presents two new 4 × 4 bit reversible multiplier designs which have lower hardware complexity, less garbage bits, less quantum cost and less constant inputs than previous ones, and can be generalized to construct efficient reversible n × n bit multipliers. An implementation of reversible HNG is also presented. This implementation shows that the full adder design using HNG is one of the best designs in term of quantum cost. An implementation of MKG is also presented in order to have a fair comparison between our proposed reversible multiplier designs and the existing counterparts. The proposed reversible multipliers are optimized in terms of quantum cost, number of constant inputs, number of garbage outputs and hardware complexity. They can be used to construct more complex systems in nanotechnology.


2014 ◽  
Vol 9 (10) ◽  
pp. 753-755 ◽  
Author(s):  
Mingliang Zhang ◽  
Li Cai ◽  
Xiaokuo Yang ◽  
Huanqing Cui ◽  
Zhichun Wang ◽  
...  

2022 ◽  
Vol 2161 (1) ◽  
pp. 012050
Author(s):  
Imran Ahmed Khan

Abstract Due to physical, material, technological, power-thermal and economical difficulties, scaling of CMOS transistors will stop very soon. Due to efficiency of power and speed compared to CMOS transistors, Carbon Nano-tube transistors are best suitable element to design logic circuits. So, CNTFETS have been utilized in designing of proposed full adder (FA) and 4-bit ripple carry adder (RCA) in this paper. Proposed FA and RCA have been compared to rival designs on bases of power, speed and power-delay-product (PDP). FA and RCA circuits have been analysed with the variation of temperature from 0°C to 100°C while the variation of supply voltages is from 0.7V to 1.3V. For all temperatures and all supply voltages, proposed FA and proposed RCA have the least power consumption, shortest delay and lowest PDP. SPICE has been utilized for simulating FAs and RCAs in 32 nm process node. Even though the fabrication is complicated than CMOS counterparts but simulation results confirm usefulness of proposed FA and RCA for high speed and power efficient arithmetic applications.


2019 ◽  
Vol 18 (1) ◽  
pp. 364-373
Author(s):  
Farnoosh Farzaneh ◽  
Reza Faghih Mirzaee ◽  
Keivan Navi

2020 ◽  
pp. 1-1
Author(s):  
Lucas A. Lascasas Freitas ◽  
Joao G. Nizer Rahmeier ◽  
Omar P. Vilela Neto

SPIN ◽  
2019 ◽  
Vol 09 (01) ◽  
pp. 1950007 ◽  
Author(s):  
Abdolah Amirany ◽  
Ramin Rajaei

As CMOS technology scales down toward below 2-digit nanometer dimensions, exponentially increasing leakage power, vulnerability to radiation induced soft errors have become a major problem in today’s logic circuits. Emerging spin-based logic circuits and architectures based on nonvolatile magnetic tunnel junction (MTJ) cells show a great potential to overcome the aforementioned issues. However, radiation induced soft errors are still a problem in MTJ-based circuits as they need sequential peripheral CMOS circuits for sensing the MTJs. This paper proposes a novel nonvolatile and low-cost radiation hardened magnetic full adder (MFA). In comparison with the previous designs, the proposed MFA is capable of tolerating particle strikes regardless of the amount of charge induced to a single node and even multiple nodes. Besides, the proposed MFA offers low power operation, low area and high performance as compared with previous counterparts. One of the most important features suggested by the proposed MFA circuit is full nonvolatility. Nonvolatile logic circuits remove the cost of high volume data transactions between memory and logic and also facilitate power gating in logic-in-memory architectures.


Sign in / Sign up

Export Citation Format

Share Document