OHMSETT RESEARCH OVERVIEW, 1979–1980*

1981 ◽  
Vol 1981 (1) ◽  
pp. 661-666
Author(s):  
John S. Farlow ◽  
Richard A. Griffiths

ABSTRACT This paper presents an overview of the 1979–1980 work performed at the OHMSETT spill research facility of the U.S. Environmental Protection Agency (EPA). The experiences of these 2 years are discussed in the light of the purpose and objectives of OHMSETT, as is the probable direction of research there during the coming years. Foremost among the objectives has been the evaluation and advancement of the state of the art for spill response. The bulk of the effort at OHMSETT, therefore, has been toward testing and investigating ways to improve equipment. This paper briefly summarizes the results of 12 equipment performance evaluations, 2 new equipment development programs, and an experimental oil weathering program. The equipment evaluated was the U.S. Coast Guard high speed “zero relative velocity” skimmer prototype; the Sapiens Sirene skimming system; the Hydrovac System sweeper arm; the Soviet harbor oil/debris skimmer; the Oil Mop remote skimmer prototype; the Versatile Bennett Arctic skimmer prototype; the Petro-Fiber, Oljesanering, AB Sorbent Distribution/Recovery System; the Global Oil Recovery (DiPerna) skimmer; the Clean Atlantic Associates Fast Response Open Sea Skimming System; the University of Lowell oil gelation system; the Peabody Meyers Corp. Vactor air conveyor; and a Coleman Environmental Pollution Control Equipment Co. vacuum truck. The equipment developed was the Johnson sampler for stratified liquids and the Johnson high speed skimmer. Several new areas of work are anticipated for the near future. These include evaluation of cleanup equipment in the presence of ice, increased emphasis on testing at spills-of-opportunity, a study of some of the problems associated with high viscosity water-in-oil emulsions, testing separators and pumps for spill response, increased emphasis on smaller skimmers, and further testing with hazardous materials.

1979 ◽  
Vol 1979 (1) ◽  
pp. 313-316
Author(s):  
William F. Croswell ◽  
John C. Fedors

ABSTRACT The U.S. Congress has directed NASA to conduct an assessment of the potential use of space technology in the monitoring of oil spills and ocean pollution. As a result, laboratory studies, aircraft missions, and spacecraft studies are underway to perform this assessment with the cooperation of the U.S. Coast Guard, the Environmental Protection Agency, the Bureau of Land Management, the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, and the Canada Centre for Remote Sensing. Primary emphasis in the space system will be directed toward all-weather remote sensing and surveillance in which the space system would provide information to regulatory agencies for closer investigation with aircraft or ships. Laboratory and aircraft missions will be directed toward understanding and obtaining simultaneous microwave and optical imagery of oil spills on the sea with instruments of potential usefulness in the modeling of the movement of spills, along with detection and surveillance image definition. This paper summarizes the status of these efforts as of late 1978. Initial results of the required assessment should be available by the end of 1979.


1983 ◽  
Vol 1983 (1) ◽  
pp. 73-79
Author(s):  
Steven Cohen ◽  
Stephen Dalton

ABSTRACT The U.S. Coast Guard's success with the high seas skimming barrier prompted the development of a smaller, half-scale version for use in protected bays and harbors. The smaller version (SCOOP) enables more rapid deployment with significantly fewer people. Individual components of the system include a 65-foot section of skimming barrier with redesigned skimming struts, 200 feet of containment boom, two 30-foot work boats for storage, transport, and operation of the system, trailers to carry the boats to the scene, and an oil recovery system including double-acting diaphragm pump, gravity-type oil-water separator, and 750-gallon collapsible storage bags. In tests at the Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tank (OHMSETT) facility, the SCOOP exhibited recovery efficiencies between 30 percent and 60 percent over a speed range of 0.5 to 1.75 knots. The oil recovery rate was between 30 and 70 gallons per minute over the same speed range. At speeds below 0.9 knots there were no losses of oil from the boom. The system has been delivered to the Coast Guard Gulf Strike Team in Bay St. Louis, Mississippi, where it is being evaluated through use in routine spill response operations and exercises.


1999 ◽  
Vol 1999 (1) ◽  
pp. 1137-1139
Author(s):  
Jeffrey C. Babb ◽  
Glenn Cekus

ABSTRACT Nationwide, the U.S. Coast Guard (CG) and the U.S. Environmental Protection Agency (EPA) are both tasked with the implementation of several environmental and safety statutes (Comprehensive Environmental Response, Compensation, and Liabilities Act [CERCLA], Oil Pollution Act of 1990 [OPA 90], Clean Water Act [CWA], international Convention for the Prevention of Pollution from Ships [MARPOL], etc.). They share important leadership roles on the National Response Team (NRT), Regional Response Team (RRT) and several other response planning bodies. Often EPA On-Scene Coordinators (OSCs) and CG OSC representatives work together in oil and chemical response operations and on various planning and exercise committees. However, the joint efforts of both organizations are often impacted by a mutual lack of understanding of each other's authorities, policies, procedures, internal structures, and leadership roles. Even the response zones for CG and EPA are often based on factors other than geography and often may not be well understood. USCG Marine Safety Office (MSO) Chicago and EPA Region V are bridging this gap in understanding by sponsoring a Peer Exchange Program. Representatives from each agency are spending up to a week with the other agency for hands-on training and education. The program was initiated in April 1996 and has produced excellent results. As a result, joint CGIEPA responses run more smoothly, mutual understanding and accessibility are enhanced, and overall public health and welfare and the environment are better protected.


2017 ◽  
Vol 2017 (1) ◽  
pp. 173-192
Author(s):  
Stacey L. Crecy ◽  
Melissa E. Perera ◽  
Elizabeth J. Petras ◽  
John A. Tarpley

ABSTRACT #2017-373 Federal agencies involved in oil spill response in the U.S. are required to comply with several environmental compliance laws. Where a Federal agency is operating in a way that may affect endangered species in the area, Section 7 of the Endangered Species Act (ESA) requires the agency to “consult” with the two Federal agencies responsible for protecting those species and habitats – the National Marine Fisheries Service (NMFS) and the United States Fish and Wildlife Service (USFWS). Following the Deepwater Horizon oil spill, nonprofit organizations filed several lawsuits against the U.S. Coast Guard (USCG) and the Environmental Protection Agency (EPA) (the “Action Agencies”) for failure to comply with the ESA during oil spill contingency planning. In one case, a settlement required the Action Agencies to consult with the NMFS and USFWS (together, called the “Services”) on the plan to use oil spill dispersants in California waters. Perhaps responding to these developments, several Regional Response Teams across the country initiated or made plans to review the status of their ESA Section 7 consultations. These efforts have varied in cost, scope, composition of agency representatives involved, and success in completing a consultation for a variety of reasons. There have been numerous challenges for USCG and EPA in meeting the ESA Section 7 consultation requirements for oil spill planning. First, the most recent framework for cooperation between the Action Agencies and the Services regarding consulting on oil spill planning and response activities is contained in an Interagency Memorandum of Agreement (MOA) signed in 2001. Although the agreement is still valid, some parts have been identified as outdated or in need of clarification. Secondly, there are no direct funding mechanisms or dedicated personnel assigned to the Action Agencies to work on pre-spill ESA Section 7 consultations. Third, recommendations and consultation outcomes can vary between Service agencies as well as internally within each Service agency due to a high level of regional autonomy. In 2015, the National Response Team (NRT) formed a new, interagency subcommittee to improve the Federal Action Agencies’ ability to comply with environmental laws such as the ESA with respect to oil spill response and pre-spill planning. A workgroup of the NRT Subcommittee was formed to specifically address pre-spill ESA Section 7 consultation processes. The workgroup includes regional and national representatives from the Action Agencies and the Services. In addition to strengthening relationships and understanding among the participating agencies, the workgroup has identified gaps in the 2001 MOA and is in the process of developing tools and templates on how to conduct pre-spill ESA Section 7 consultations to help fill some of the existing gaps. The workgroup ultimately hopes to facilitate the development of updated, complete, efficient, and consistent ESA Section 7 consultations across the nation.


2010 ◽  
Vol 1 (2) ◽  
pp. 0
Author(s):  
J. W. Johnson

This conference was sponsored jointly by the Council on Wave Research, the Southwest Research Institute, and Texas A&M Research Foundation. Support in its preparation was supplied by Rice Institute, the University of Houston, and the local branches of the American Society of Civil Engineers, the American Society of Mechanical Engineers, the American Institute of Mining and Metallurgical Engineers, and the American Petroleum Institute. Appreciation is expressed to the U.S. Coast Guard Headquarters and the Mobile and Galveston Districts of the Corps of Engineers for photographs supplied to illustrate the cover and the section titles of this publication.


1981 ◽  
Vol 1981 (1) ◽  
pp. 243-247 ◽  
Author(s):  
A. E. Tanos

ABSTRACT Rising waters on the Illinois River during April 1979 caused breaks in the levee near Meredosia, Illinois. The swollen river flooded 10,000 acres of farmland, as well as the asphalt storage tank farm of the Meredosia Oil Terminal. The 35 tanks within the terminal included several multimillion gallon tanks of hot asphalt, as well as those containing the diesel fuel for the heating system. The floodwater reached a depth of 12 feet and the hydrostatic pressure of the rising waters lifted the diesel fuel tanks and toppled them. Thousands of gallons of oil spilled from the vents at the top of the tanks, or from the broken pipelines at their bases. A westerly wind moved the oil out over the flooded farmland. The terminal operator's resources were depleted after long efforts to prevent the levee breaks. The spill-ctonainment dike around the tank farm was underwater, so several thousand feet of floating containment boom was brought in to surround the tank farm. A Marco Class self-propelled skimmer was flown in by the U.S. Coast Guard Strike Force. However, inspections on the second day revealed that much of the oil had diffused out over the floodwater and did not appear to be recoverable. Response forces concentrated on the spilled oil within the tank farm and the potential of teh toppled and floating tanks. After 3 days of cleanup, a brief, violent storm blew oily debris back to the terminal from across the lake. Now a massive debris recovery effort was begun in addition to the oil recovery. Cleanup efforts continued for 51 days, until by June 4, 1979, the floodwaters had dropped below the tank farm's spill-containment dike.


1991 ◽  
Vol 28 (05) ◽  
pp. 270-275
Author(s):  
Robert H. Fitch ◽  
Gordon D. Marsh

The paper describes the U.S. Coast Guard's efforts to establish regulations for marine vapor control systems that will maintain the safe operation of tankships, tank barges, and waterfront facilities when the more stringent air-quality standards are implemented by the Environmental Protection Agency. The reasons for the new standards are given. Marine vapor control systems are described, along with their attendant hazards. The development and nature of the Coast Guard's regulations are described and, finally, international efforts in the area are briefly reviewed.


1977 ◽  
Vol 1977 (1) ◽  
pp. 375-379 ◽  
Author(s):  
Jerome H. Milgram ◽  
Richard A. Griffiths

ABSTRACT This paper describes the development of an oil recovery system to be used in conjunction with the U.S. Coast Guard's high seas oil containment barriers. The system was tested at the EPA's OHMSETT facility in 1975. Its oil recovery capability was shown to be good, with promise for yet better recovery when used on a large spill. Operational practicality was demonstrated in sea trials during May 1976, when the barrier was string towed, catenary towed, and moored in a tidal current. Because of the difficulty of handling large or complicated equipment in offshore conditions, a major design criterion was that the system be as simple as possible. Weir skimmers are particularly simple, but collection of more oil than water or air requires that the weirs follow the vertical motion of the waves. Simplicity and efficiency were achieved by utilizing the wave-following ability of the Coast Guard barrier design. Weirs were built into six struts at the center of a length of barrier, so that barrier deployment results in simultaneous skimmer deployment. To recover oil, it is only necessary to attach pump hoses to the barrier. Three double-acting diaphragm pumps are used. These self-priming pumps were specifically designed to pass any debris that can enter through the three-inch diameter suction hoses. Hydraulic drive was chosen so the pumps could be powered by the Coast Guard's ADAPTS diesel-engine-driven hydraulic power units.


2021 ◽  
Vol 2021 (1) ◽  
pp. 684710
Author(s):  
Jim Elliott

Abstract The marine salvage industry plays a vital role in protecting the marine environment. Governments, industry and the public, worldwide, now place environmental protection as the driving objective, second only to the safety of life, during a marine casualty response operation. Recognizing over 20 years after the passage of the Oil Pollution Act of 1990 that the effectiveness of mechanical on-water oil recovery remains at only about 10 to 25 percent while the international salvage industry annually prevents over a million tons of pollutants from reaching the world's oceans, ten years ago the United States began implementing a series of comprehensive salvage and marine firefighting regulations in an effort to improve the nation's environmental protection regime. These regulations specify desired response timeframes for emergency salvage services, contractual requirements, and criteria for evaluating the adequacy of a salvage and marine firefighting service provider. In addition to this effort to prevent surface oil spills, in 2016, the U.S. Coast Guard also recognized the salvage industries advancements in removing oil from sunken ships and recovering submerged pollutants, issuing Oil Spill Removal Organization (OSRO) classification standards for companies that have the capabilities to effectively respond to non-floating oils. Ten years after the implementation of the U.S. salvage and marine firefighting regulatory framework, this paper will review the implementation of the U.S. salvage and marine firefighting regulations and non-floating oil detection and recovery requirements; analyze the impacts and effectiveness of these new policies; and present several case studies and recommendations to further enhance salvage and oil spill response effectiveness.


EDIS ◽  
1969 ◽  
Vol 2004 (1) ◽  
Author(s):  
Michael T. Olexa ◽  
Aaron Leviten ◽  
Kelly Samek

This document discusses the important federal laws and regulations that impact solid waste management. Each particular statute is “explained” as it would probably apply to you. It also includes a brief description of the federal agencies responsible for implementing and enforcing these statutes. First and foremost is the Environmental Protection Agency (EPA), but other federal agencies, such as the Department of Agriculture, the U.S. Army Corps of Engineers, and the U.S. Coast Guard, may become involved in the disposal of solid and hazardous wastes. This is EDIS document FE443, a publication of the Department of Food and Resource Economics, Florida Cooperative Extension Service, UF/IFAS, University of Florida, Gainesville, FL. Published December 2003.  https://edis.ifas.ufl.edu/fe443


Sign in / Sign up

Export Citation Format

Share Document