An Offshore Regulator's Perspective: Maintaining Focus on Managing Spill Risk

2014 ◽  
Vol 2014 (1) ◽  
pp. 890-900
Author(s):  
Cameron Grebe ◽  
Matthew Smith ◽  
David Ball

ABSTRACT Lest we forget – three years after Macondo the focus on preparing for major oil spills and ensuring offshore petroleum companies have arrangements in place that match the specific risks of the activity is as critical as ever. The Australian regulator is resolved to continually challenge risk assessments and require companies to go beyond design events in order to meet their commitments for a world-class preparedness and response capability. Established to independently administer an objective-based regulatory regime for the offshore petroleum industry in Australian Commonwealth waters, the National Offshore Petroleum Safety and Management Authority seeks to hold industry to account for its level of preparedness for a major incident. Challenged by remote and vulnerable areas, the Australian oil and gas industry has responded admirably, if not collectively. The competitive nature of the industry, the necessary focus on prevention, emerging technologies and more difficult targets have influenced the level of enthusiasm for continually improving oil spill preparedness arrangements. As the regulator of offshore environmental management our focus is to ensure that as time progresses, and prevention measures prove themselves reliable, that these factors do not impede further progress in preparing for mitigating and remediating major oil spills. There are paradoxical challenges for industry preparedness. No single company can or should hold the full range of resources for a preventable incident. Yet society expects exactly this standard from those developing Australia's riches. The radical centre of this paradox is where insightful and lasting solutions can and must be found - weak compromises such as showing preparedness for your last event will often fail when put to the test. Companies and Governments alike must maintain situational awareness of their spill risks and evaluate the circumstances they find themselves in and implement measures to manage this risk. A regulator's role is only effective if they are challenging companies and asking questions: Have you done enough to understand and manage the risks? Are you implementing what is required? The regulator in Australia has implemented a way of regulating that, in part, aims to keep industry's focus on their next event and not their last. Its mechanism for doing so is to establish an improvement culture of open and transparent risk assessments that are subject to challenge against legislated risk acceptance criteria. This paper outlines the current challenges of an independent regulator and identifies the next steps in challenging industry to do more.

2020 ◽  
Vol 8 (8) ◽  
pp. 555 ◽  
Author(s):  
Dejan Brkić ◽  
Pavel Praks

Ships for drilling need to operate in the territorial waters of many different countries which can have different technical standards and procedures. For example, the European Union and European Economic Area EU/EEA product safety directives exclude from their scope drilling ships and related equipment onboard. On the other hand, the EU/EEA offshore safety directive requires the application of all the best technical standards that are used worldwide in the oil and gas industry. Consequently, it is not easy to select the most appropriate technical standards that increase the overall level of safety and environmental protection whilst avoiding the costs of additional certifications. We will show how some technical standards and procedures, which are recognized worldwide by the petroleum industry, can be accepted by various standardization bodies, and how they can fulfil the essential health and safety requirements of certain directives. Emphasis will be placed on the prevention of fire and explosion, on the safe use of equipment under pressure, and on the protection of personnel who work with machinery. Additionally considered is how the proper use of adequate procedures available at the time would have prevented three large scale offshore petroleum accidents: the Macondo Deepwater Horizon in the Gulf of Mexico in 2010; the Montara in the Timor Sea in 2009; the Piper Alpha in the North Sea in 1988.


2019 ◽  
Vol 59 (2) ◽  
pp. 719
Author(s):  
Matthew Smith

This extended abstract uses the reference case project, initiated by National Offshore Petroleum Safety and Environmental Management Authority, now led by National Energy Resources Australia, to delve into the underlying issues in the environmental approvals process and propose the root causes that have influenced this flagship collaborative effort. Collaboration for competitors is inherently difficult. The basis for meaningful collaboration is to find intractable problems that are better solved by a collection of participants with a common purpose. The environmental approvals process has evolved into an intractable problem that is adversely affecting the oil and gas industry’s ability to explore by becoming a barrier to investment and a source of uncertainty in project execution. Successive Australian Petroleum Production & Exploration Association conferences, and oil and gas industry leaders, have frequently promoted the collaboration imperative to the industry. Indeed, there is broad agreement, and many international examples on matters of health, safety and environmental management, that there is no value in competition. Why then is meaningful collaboration so difficult to deliver in an environmental management setting in Australia? This paper explores the successes and failures of the reference case project to illuminate the realities of collaboration in the Australian offshore petroleum industry. The paper shares insights from project leads, participants, decision makers and stakeholders and covers how collaboration can unlock barriers to investment and deliver greater certainty to the oil and gas industry and the Australian community.


2021 ◽  
Author(s):  
Rune Vikane ◽  
Jon Tømmerås Selvik ◽  
Eirik Bjorheim Abrahamsen

Abstract The 2014 Wood Review is a report reviewing UK offshore oil and gas recovery and its regulation, led by Sir Ian Wood. The report identifies and addresses key challenges in the UK petroleum industry, among them the lack of a strong regulatory body and a decommissioning strategy. The UK petroleum industry is mature, and Norway may benefit from UK's experiences in decommissioning. The article investigates the applicability of the Wood Review recommendations for decommissioning in Norway. The analysis of the recommendations in the Wood Review is carried out by a SWOT-analysis of the general recommendations with a high potential impact on decommissioning as well as the five recommendations specific to decommissioning. The recommendations in the Wood Review were broadly accepted by UK authorities and formed the basis for numerous initiatives aimed at improving policies and practices in UK decommissioning. The key initiatives are presented to illustrate how the Wood Review recommendations has been interpreted. A summary of the key differences between the petroleum industries and the regulatory authorities in Norway and the UK is provided for background. Decommissioning in Norway face similar challenges to those identified in the Wood Review. The analysis indicates that several of the UK initiatives following the recommendations in the Wood Review has the potential of improving decommissioning in Norway. Differences in regulatory regimes between the regions may complicate the implementation of some of the initiatives following the Wood Review in Norway. In most cases only minor changes to regulations and/or practices are required. Recent UK initiatives with a high impact on decommissioning include increased focus on sharing of information and lessons learned, increased collaboration, the development of a decommissioning strategy, benchmarking of decommissioning cost estimates for all projects and the development and publishing of annual UK decommissioning cost estimates. There are indications that the Norwegian Petroleum Directorate (NPD) and the Norwegian Ministry of Petroleum and Energy (MPE) are falling behind their UK counterparts in key areas. Norway has limited experience with decommissioning, and scrupulous analysis of lessons learned in other regions is essential. Decommissioning of Norwegian offshore infrastructure is a major undertaking and even minor improvements may have a substantial impact on personnel risk, risk to the environment or the total decommissioning expenditure. The Norwegian regulatory regime has been an integral part of the Norwegian petroleum industry's success in previous decades, and changes to the regime require careful deliberation. The recent implementation of initiatives aimed at improving decommissioning regulations and practices in the UK represents a unique learning opportunity for Norwegian authorities. The analysis suggest that Norway may benefit from adopting some of the UK initiatives following the Wood Review recommendations.


1986 ◽  
Vol 39 (11) ◽  
pp. 1687-1696 ◽  
Author(s):  
Jean-Claude Roegiers

The petroleum industry offers a broad spectrum of problems that falls within the domain of expertise of mechanical engineers. These problems range from the design of well production equipment to the evaluation of formation responses to production and stimulation. This paper briefly describes various aspects and related difficulties with which the oil industry has to deal, from the time the well is spudded until the field is abandoned. It attempts to delineate the problems, to outline the approaches presently used, and to discuss areas where additional research is needed. Areas of current research activity also are described; whenever appropriate, typical or pertinent case histories are used to illustrate a point.


2021 ◽  
Author(s):  
Cenk Temizel ◽  
Celal Hakan Canbaz ◽  
Hakki Aydin ◽  
Bahar F. Hosgor ◽  
Deniz Yagmur Kayhan ◽  
...  

Abstract Digital transformation is one of the most discussed themes across the globe. The disruptive potential arising from the joint deployment of IoT, robotics, AI and other advanced technologies is projected to be over $300 trillion over the next decade. With the advances and implementation of these technologies, they have become more widely-used in all aspects of oil and gas industry in several processes. Yet, as it is a relatively new area in petroleum industry with promising features, the industry overall is still trying to adapt to IR 4.0. This paper examines the value that Industry 4.0 brings to the oil and gas upstream industry. It delineates key Industry 4.0 solutions and analyzes their impact within this segment. A comprehensive literature review has been carried out to investigate the IR 4.0 concept's development from the beginning, the technologies it utilizes, types of technologies transferred from other industries with a longer history of use, robustness and applicability of these methods in oil and gas industry under current conditions and the incremental benefits they provide depending on the type of the field are addressed. Real field applications are illustrated with applications indifferent parts of the world with challenges, advantages and drawbacks discussed and summarized that lead to conclusions on the criteria of application of machine learning technologies.


2021 ◽  
Author(s):  
David Christensen ◽  
Andrew Re

Abstract The National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA) is Australia's independent expert regulator for health and safety, structural (well) integrity and environmental management for all offshore oil and gas operations and greenhouse gas storage activities in Australian waters, and in coastal waters where regulatory powers and functions have been conferred. The Australian offshore petroleum industry has been in operation since the early 1960s and currently has approximately 57 platforms, 11 floating facilities, 3,500km of pipelines and 1000 wells in operation. Many offshore facilities are now approaching the end of their operational lives and it is estimated that over the next 50 years decommissioning of this infrastructure will cost more than US$40.5 billion. Decommissioning is a normal and inevitable stage in the lifetime of an offshore petroleum project that should be planned from the outset and matured throughout the life of operations. While only a few facilities have been decommissioned in Australian waters, most of Australia's offshore infrastructure is now more than 20 years old and entering a phase where they require extra attention and close maintenance prior to decommissioning. When the NOGA group of companies entered liquidation in 2020 and the Australian Government took control of decommissioning the Laminaria and Corallina field development it became evident that there were some fundamental gaps in relation to decommissioning in the Australian offshore petroleum industry. There are two key focus areas that require attention. Firstly, regulatory reform including policy change and modification to regulatory practice. Secondly, the development of visible and robust decommissioning plans by Industry titleholders. The purpose of this paper is to highlight the importance and benefit of adopting good practice when planning for decommissioning throughout the life cycle of a petroleum project. Whilst not insurmountable, the closing of these gaps will ensure that Australia is well placed to deal with the decommissioning challenge facing the industry in the next 50 years.


2010 ◽  
Vol 50 (2) ◽  
pp. 685
Author(s):  
John Polglaze

Legends, myths and plain old misinformation abound of whale migrations interrupted by international shipping, dolphin populations displaced by dredging activities, and of seismic survey campaigns resulting in disoriented, beached whales. While risks exist, in truth the Australian petroleum industry continues to demonstrate that it can successfully coexist productively alongside populations of cetacean. These whales and dolphins are seemingly able to at least tolerate, if not actually be undisturbed by, underwater noise. Other risks to cetaceans from oil and gas activities, whether actual or perceived, encompass vessel strike, turbidity plumes from dredging, port developments, underwater blasting, spills, the laying and operation of pipelines, and similar. URS Australia’s John Polglaze is a specialist in the environmental impact evaluation of underwater noise, and has over 15 years experience in marine environmental management and impact assessment following nearly 20 years service in the Royal Australian Navy. John presents on the range of environmental impact assessment challenges for the oil and gas industry in Australian coastal and offshore regions, and effective, pragmatic solutions for demonstrating low risks to cetaceans and other sensitive marine fauna. These include the application and limitations of computer-based models to predict underwater noise and blast propagation, the development of a risk assessment framework that has proven effective with state and Commonwealth regulators, and case studies of real-life interactions between the petroleum industry and cetacean populations. In particular, he will discuss how misunderstanding and misapprehension of these complex issues unnecessarily complicates the challenges of environmental compliance. This topic is timely, given that Australia’s rapidly increasing whale populations, coupled with the continued expansion of offshore petroleum activities, will lead to more frequent interaction between and overlap of cetaceans and oil and gas activities.


1999 ◽  
Vol 39 (1) ◽  
pp. 584 ◽  
Author(s):  
M.M. Gagnon ◽  
K. Grice ◽  
R.I. Kagi

Field assessments using biochemical and chemical markers in marine organisms will be necessary to provide the Australian Petroleum Industry with a realistic evaluation of the impact of their activities on the marine environment. In field investigations, wild or caged animals are sacrificed and their organs are collected in order to assess if industrial activities do have a significant adverse impact on the organisms' health. Biochemical markers of chronic exposure to contamination may include reversible effects such as induction of a detoxification system, or permanent effects such as damage to nuclear DN A. Studies of sentinel species using biochemical markers of exposure, complemented by chemical analyses provide a realistic holistic method for assessment of environmental health. This multidisciplinary approach has proven valuable in Europe and North America.This paper outlines the need for biochemical and chemical markers to assess environmental health in a dynamic milieu such as the North West Shelf of Australia. Selected biochemical markers for use by the oil and gas industry in field monitoring of ecological health, and the complementary chemical measurements focussed on persistent contaminants such as poly eye lie aromatic hydrocarbons (PAHs), are described. The biological and ecotoxicological significance of the biochemical markers applied in sentinel marine organisms is reviewed, and some limitations regarding their interpretation are stated. It is suggested that biochemical monitoring of the environment complemented with sophisticated chemical measurements can provide environmental managers working within the oil and gas industry with a system for ecotoxicological monitoring programs in offshore Australia.


Author(s):  
Marilia A. Ramos ◽  
Alex Almeida ◽  
Marcelo R. Martins

Abstract Several incidents in the offshore oil and gas industry have human errors among core events in incident sequence. Nonetheless, human error probabilities are frequently neglected by offshore risk estimation. Human Reliability Analysis (HRA) allows human failures to be assessed both qualitatively and quantitatively. In the petroleum industry, HRA is usually applied using generic methods developed for other types of operation. Yet, those may not sufficiently represent the particularities of the oil and gas industry. Phoenix is a model-based HRA method, designed to address limitations of other HRA methods. Its qualitative framework consists of three layers of analysis composed by a Crew Response Tree, a human response model, and a causal model. This paper applies a version of Phoenix, the Phoenix for Petroleum Refining Operations (Phoenix-PRO), to perform a qualitative assessment of human errors in the CDSM explosion. The CDSM was a FPSO designed to produce natural gas and oil to Petrobras in Brazil. On 2015 an explosion occurred leading to nine fatalities. Analyses of this accident have indicated a strong contribution of human errors. In addition to the application of the method, this paper discusses its suitability for offshore operations HRA analyses.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2116 ◽  
Author(s):  
Michael Frank ◽  
Robin Kamenicky ◽  
Dimitris Drikakis ◽  
Lee Thomas ◽  
Hans Ledin ◽  
...  

An oil and gas separator is a device used in the petroleum industry to separate a fluid mixture into its gaseous and liquid phases. A computational fluid dynamics (CFD) study aiming to identify key design features for optimising the performance of the device, is presented. A multiphase turbulent model is employed to simulate the flow through the separator and identify flow patterns that can impinge on or improve its performance. To verify our assumptions, we consider three different geometries. Recommendations for the design of more cost- and energy-effective separators, are provided. The results are also relevant to broader oil and gas industry applications, as well as applications involving stratified flows through channels.


Sign in / Sign up

Export Citation Format

Share Document