scholarly journals Quantified Exposures from Potential Deepwater Releases for Comparative Risk Assessment of Oil Spill Response Options Including Dispersant Use

Author(s):  
Deborah French-McCay ◽  
Deborah Crowley ◽  
Jill Rowe ◽  
Michael Bock ◽  
Hilary Robinson ◽  
...  

ABSTRACT The goal of oil spill response is to mitigate the overall impacts of spilled oil on ecological and socioeconomic resources. Surface and subsea dispersant applications are effective tools that remain controversial after decades of research and discussion. The tradeoff that dispersants potentially increase effects on water column and benthic communities while reducing floating and nearshore/shoreline oil exposure is recognized, but inevitably are qualitatively considered when subjectivity and stakeholder interests prevail. To be objective and transparent, we developed a quantitative approach using oil spill modeling to evaluate response alternatives in a Comparative Risk Assessment (CRA) framework where the fractions of resources potentially exposed are compared, along with their recovery potential. The model quantifies exposure as water surface area, shoreline area and water volume exposed above thresholds of concern, multiplied by duration of exposure, in each environmental compartment. These exposure metrics (i.e., area-days or volume-days) are multiplied by relative densities across the environmental compartments to evaluate the fractions of the resources exposed in each modeled scenario. The fractions of resources exposed, along with their recovery potential, inform decisionmakers using a Spill Impact Mitigation Assessment (SIMA) approach with quantitative estimates of potential consequences, which they may consider along with stakeholder values. Previously, we evaluated a deepwater blowout in the Gulf of Mexico, assuming no intervention or various response options (mechanical recovery, in-situ burning, surface dispersant application, and subsea dispersant injection [SSDI]). The findings were that inclusion of SSDI reduced human and wildlife exposure to volatile organic compounds; dispersed oil into a large water volume at depth; enhanced biodegradation; and reduced surface water, nearshore and shoreline exposure to floating oil and entrained/dissolved oil in the upper water column. Tradeoffs included increased exposures at depth. However, since organisms are less abundant at depth, overall exposure of valued ecosystem components was minimized by use of SSDI. Follow-up modeling shows the benefits of SSDI are due to reduction of the oil droplet sizes released to the water column. Droplet sizes are sensitive to oil and gas release rates, release depth, orifice size and dispersant-to-oil ratio. The exposure metrics resulting from a matrix of scenarios varying these inputs and response actions are expected to be generally representative of the fate and behavior of oil and gas blowouts in the offshore areas of the Gulf of Mexico, as well as other regions with similar oceanographic conditions.

Author(s):  
Per Johan Brandvik ◽  
Daniel F. Krause ◽  
Frode Leirvik ◽  
Per S. Daling ◽  
Zach Owens ◽  
...  

Abstract The size distribution of oil droplets formed in subsea oil and gas blowouts is known to have a strong impact on their subsequent fate in the environment. Small droplets have low rising velocities, are more influenced by oceanographic turbulence and have larger potential for natural biodegradation. Subsea Dispersant Injection (SSDI) is an established method for achieving this goal, lowering the interfacial tension between the oil and water and significantly reducing oil droplet size. However, despite its many advantages, the use of SSDI could be limited both by logistical constraints and legislative restrictions. Adding to the toolkit a method to achieve subsea dispersion, without the use of chemicals, would therefore enhance oil spill response capability. This option is called Subsea Mechanical Dispersion (SSMD). An extensive feasibility study on SSMD has been performed and the main findings are reported in this paper. The work was initiated by BP in 2015 and later followed up by a consortium of Equinor, Total Norge, Aker BP and Lundin. The first phase explored multiple principles of generating subsea dispersions (ultrasonic, mechanical shear forces and water jetting) through both laboratory experiments and modelling. These studies clearly indicate that SSMD has an operational potential to significantly reduce oil droplet sizes from a subsea release and influence the fate and behaviour of the released oil volume. The recent work reported in this paper on operationalisation, upscaling and large-scale testing of subsea water jetting. This work is performed by SINTEF in close cooperation with Exponent (computational fluid dynamics and shear stress modelling) and Oceaneering (operationalisation and full-scale prototyping).


2005 ◽  
Vol 2005 (1) ◽  
pp. 1095-1098
Author(s):  
Geir Morten Skeie ◽  
Frode Engen ◽  
Odd Willy Brude ◽  
Marit E. Randall

ABSTRACT The Norwegian Continental Shelf (NCS) extends from latitude 56° to 71°. Along the 82,000 km coastline and offshore, biodiversity is high, with large populations of fish, seabirds and marine mammals. In terms of oil and gas production, there is an increasing diversity in technical structures, water depth, and oil types, as recovery proceeds to smaller reservoirs. This calls for a high degree of flexibility in oil spill response strategies. According to Norwegian regulations, alternative response strategies must be analysed in a standardized way, including Net Environmental Benefit Analyses (NEBA). For this purpose, a GIS based method has been developed for net environmental benefit analysis of different oil spill response options for the NCS. Through a GIS interface, the user can interactively select a release location, an oil type, and a month for the oil spill. A standard map is generated, showing areas where different oil response strategies pose a net environmental benefit, net environmental loss, or a conflict.


2018 ◽  
Vol 133 ◽  
pp. 984-1000 ◽  
Author(s):  
Michael Bock ◽  
Hilary Robinson ◽  
Richard Wenning ◽  
Deborah French-McCay ◽  
Jill Rowe ◽  
...  

Author(s):  
Michael Bock ◽  
Hilary Robinson ◽  
Richard Wenning ◽  
Deborah French-McCay ◽  
Jill Rowe ◽  
...  

ABSTRACT Subsea dispersant injection (SSDI) applied to a deepwater blowout has been shown to be a highly efficient oil spill response (OSR) tool that, under appropriate conditions, can substantially lessen and delay oil surfacing as well as reduce the persistence of surface oil slicks. Bock et al. (2018) explored the relative ecological and societal risks associated with integration of SSDI into OSR strategies in the northern Gulf of Mexico using a comparative risk assessment (CRA) desktop analysis tool. The CRA analysis tool was developed with regulatory and stakeholder engagement and communication in mind; the user interface and emphasis on visualization of the assessment results were intended to facilitate rapid examination of the consequences of different spill scenarios in the presence and absence of SSDI and other OSR technologies. Using the CRA tool, decision makers are now better able to predict the nature and extent of the likely consequences to shoreline and aquatic valued ecological components (VECs) and environmental compartments (ECs), and examine the relative consequences of deploying different response technologies. The CRA tool has been substantially improved and has been redesigned from an Excel spreadsheet into a web-based application with enhanced interactive data visualizations and collaboration tools. The new web-based CRA tool is based on the Shiny application framework, an R based open source system for building interactive web-based applications. The updated CRA tool (https://nert.shinyapps.io/CRA_viewer/) now includes improved visualizations of the oil spill modeling results, depictions of the spatial footprint of different ECs, and the interactive exploration of the CRA results and intermediate calculations. Stakeholders are able to drill down into the components of the analysis and more easily explore the parameters that drive CRA scores, as well as explore alternative scoring options. The tool has also been modified to facilitate updating the CRA tool for new oil spill scenarios and OSR options. This web-based interactive CRA tool greatly enhances the usability of CRA as a collaborative tool for evaluating OSR options during planning and can also be used to inform the evaluation of response options during planning, training, and during an incident.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2976-2995 ◽  
Author(s):  
Janne Fritt-Rasmussen ◽  
Kim Gustavson ◽  
Susse Wegeberg ◽  
Eva Friis Møller ◽  
Rasmus Dyrmose Nørregaard ◽  
...  

ABSTRACT Research on the fate and effects of herding agents used to contain and thicken oil slicks for in situ burning in Arctic waters continues under the auspices of the International Association of Oil and Gas Producers Arctic Oil Spill Response Technology – Joint Industry Program (JIP). In 2014/2015 laboratory studies were conducted on the fate and effects of herders. The purpose of the studies was to improve the knowledge base used to evaluate the environmental risk of using herders in connection with in situ burning for oil spill response in Arctic seas. Two herding agents were studied (OP 40 and ThickSlick 6535). Laboratory-scale herding and burning experiments were carried out for investigating the physical fate of the two herders during combustion of Alaska North Slope and Grane crude oils (fresh and emulsified). The results showed that after burning, the herder was mainly found on the water surface, and only small concentrations of herders were found in the water column (0.2–22.8 mg/L). The inherent properties of herders in relation to toxicity and bioaccumulation on the high Arctic copepods (Calanus hyperboreus), as well as the biodegradability of herders were studied under arctic conditions. The results indicated that a distinct mortality was seen at the highest test concentrations of the herders. However, the concentration of herders required to produce acute toxicity in the laboratory was approximately three orders of magnitude higher than the concentrations measured in the water column when herders were used to conduct an in situ burn in the laboratory. OP-40 might bio-accumulate whereas TS6535 might not. TS6535 was mostly degraded within 7 days, whereas the degradation of OP-40 was insignificant over 28 days. Since herders are mainly considered as a surface active chemical compound, the potential impacts of herders on Arctic seabird feathers (from legally hunted Thick-Billed Murre and Common Eider) were investigated. Different dosages of herders were tested; high dosages that might be present just after the application of the herder and low dosages (approximately monolayers) likely to occur for a significant time and distance from the operations. Low dosages corresponding to approximately monolayers of OP-40 and TS6535 did not cause feathers to sink; however they did absorb more water than the controls. The high dosages caused measured damages to the feather microstructure. Finally, laboratory burning experiments were carried out to determine if there was a difference in the composition of smoke plumes from mechanically contained burns versus herded oil burns. Herder was not measured in the smoke plumes, and there were no other noticeable differences in combustion between the two methods of containment (herder vs. metal ring).


2017 ◽  
Vol 2017 (1) ◽  
pp. 1487-1506 ◽  
Author(s):  
Joseph V. Mullin

Abstract 2017-161 Over the past four decades, the oil and gas industry has made significant advances in being able to detect, contain and clean up spills and mitigate the residual consequences in Arctic environments. Many of these advances were achieved through collaborative research programs involving industry, academic and government partners. The Arctic Oil Spill Response Technology - Joint Industry Programme (JIP), was launched in 2012 and completed in early 2017 with the objectives of building on an already extensive knowledge base to further improve Arctic spill response capabilities and better understand the environmental issues involved in selecting and implementing the most effective response strategies. The JIP was a collaboration of nine oil and gas companies (BP, Chevron, ConocoPhillips, Eni, ExxonMobil, North Caspian Operating Company, Shell, Statoil, and Total) and focused on six key areas of oil spill response: dispersants; environmental effects; trajectory modeling; remote sensing; mechanical recovery and in-situ burning. The JIP provided a vehicle for sharing knowledge among the participants and international research institutions and disseminating information to regulators, the public and stakeholders. The network of engaged scientists and government agencies increased opportunities to develop and test oil spill response technologies while raising awareness of industry efforts to advance the existing capabilities in Arctic oil spill response. The JIP consisted of two phases, the first included technical assessments and state of knowledge reviews resulting in a library of sixteen documents available on the JIP website. The majority of the JIP efforts focused on Phase 2, actual experiments, and included laboratory, small and medium scale tank tests, and field research experiments. Three large-scale field tests were conducted in the winter and spring months of 2014–2016 including recent participation of the JIP in the 2016 NOFO oil on water exercise off Norway. The JIP was the largest pan-industry programme dedicated to oil spill response in the Arctic, ever carried out. Twenty seven research projects were successfully and safely conducted by the world’s foremost experts on oil spill response from across industry, academia, and independent scientific institutions in ten countries. The overarching goal of the research was to address the differing aspects involved in oil spill response, including the methods used, and their applicability to the Arctic’s unique conditions. All research projects were conducted using established protocols and proven scientific technologies, some of which were especially adjusted for ice conditions. This paper describes the scope of the research conducted, results, and key findings. The JIP is committed to full transparency in disseminating the results through peer reviewed journal articles, and all JIP research reports are available free of charge at www.arcticresponsetechnology.org.


2003 ◽  
Vol 2003 (1) ◽  
pp. 371-376 ◽  
Author(s):  
Hélder O. Ferreira ◽  
Alexandre Cabrai ◽  
Álvaro Souza Junior

ABSTRACT The Brazilian oil and gas E&P sector has been experiencing important changes since the end of the state monopoly in 1998. These changes include a new regulatory environment which is still under construction, in particular the requirements for environmental protection. In this context, Resolution 293 of Brazilian National Environmental Council (CONAMA) was enacted regulating Facility Response Plans for oil spill incidents. These plans, which should be approved by the competent authority, include a vulnerability analysis that should discuss the probability of oil reaching certain areas as well as the environmental sensitivity of these areas. Oil spill modeling is an important tool to estimating the areas likely to be affected by an oil spill. Although oil spill modeling is also part of the environmental studies required in the environmental permitting process for oil E&P activities, there are not well defined criteria to compose the oil spill scenarios to be modeled. In order to demonstrate the impacts of different approaches in the results of oil spill modeling, a case study is presented related to an offshore drilling activity.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2561-2580
Author(s):  
Angeline Morrow ◽  
Christopher Pfeifer ◽  
Victoria Broje ◽  
Rachel Grunberg

ABSTRACT #2017-204: There is a growing recognition of the role science plays in supporting oil spill response coupled with increasing reliance on data-driven management and decision-making approaches. Collecting samples for analysis of hydrocarbons and other chemicals potentially used during oil spill response (e.g., dispersants) has become common place on many spills. While the rationale and approaches for oil spill sampling may be well known to experienced chemists and environmental scientists, the response community is still gaining experience in integrating sampling programs into dynamic oil spill response and decision-making. This paper reviews common sampling objectives for three key aspects of spill response: operational decision-support, environmental impact assessment (including natural resource damage assessment), and source identification. These broad categories span a range of interrelated sub-topics including, among others, public/worker health and safety; understanding how physical and chemical properties of oil influence selection of response options; monitoring cleanup effectiveness, especially for alternative response technologies such as dispersants; identifying and differentiating between spill and non-spill pollution sources; and evaluating potential impacts to resources at risk. Methods for achieving sampling objectives, including development of Sampling and Analysis Plans, are discussed with the goal of increasing awareness among response managers and improving response capability among staff who may be tasked with sampling support during training exercises or actual incidents. Relevant considerations for study design, collection methods, and analytical parameters are also reviewed.


2014 ◽  
Vol 2014 (1) ◽  
pp. 14-25
Author(s):  
Lucas Fantinato ◽  
Adriano Ranierin ◽  
Pedro Martins ◽  
Gustavo Lutz

ABSTRACT In the past, Brazilian Oil Spill Response Plans focused on the definition of response strategies in offshore environments, but were insufficient when it came to shoreline protection. After the occurrence of major oil spill accidents around the world and events of great repercussion in Brazil and with the intensification of oil and gas E&P activities in locations close to the coast and near environmentally sensitive areas in the country (such as Camamu-Almada and the Jequitinhonha basin), the need for additional nearshore response studies became of the utmost importance. Recently developed documents address the environmental characterization of the coast and indicate the appropriate response strategies, but a more action-oriented approach is needed. For that purpose, based on the best practices in shoreline protection worldwide, a methodology is being implemented so as to provide consistent preparedness support for the protection of nearshore resources. The methodology uses the Brazilian licensing mandatory documents in order to identify the appropriate level of protection preparedness for each of the vulnerable segments of shoreline within the domain of the E&P activity. Once the proper level of preparedness has been identified, the method indicates how to attain such result by presenting a set of tools, such as: TRP (Tactical Response Plan), VoOs (Vessel of Oportunity) Program, Advances Bases and Full Deployment Exercises. This paper provides an overview of the methodology, followed by a case study in Brazil which helps illustrate how the level of preparedness is determined and how the proposed tools help achieve such result. Therefore, it allows assessing the effectiveness of this new approach in the country. Considering Brazil's growing E&P potential, the long extent of its coastline and the abundance of sensitive resources alongshore, the methodology should be applied to other E&P projects developed in the country.


2014 ◽  
Vol 2014 (1) ◽  
pp. 1353-1363 ◽  
Author(s):  
Elliott Taylor ◽  
Miguel Moyano ◽  
Alexis Steen

ABSTRACT In 2011 the Regional Association of Oil and Gas Companies - Latin America and the Caribbean (ARPEL) developed the “Oil Spill Response Planning and Readiness Assessment Manual” and its assessment tool, the “Readiness Evaluation Tool for Oil Spills (RETOS™)” with the support of regional and international experts from industry and government, including associations such as Clean Caribbean and Americas (CCA), RAC-REMPEITC-Carib, and IMO. The ARPEL Manual and RETOS™ provide a general guide for industry and governments to assess their level of oil spill response (OSR) planning and readiness management in relation to pre-established criteria. These criteria are commonly agreed upon by the institutions involved in the project and consider international best management practices. The foundation for the ARPEL Manual's concepts and criteria is the “Assessment of Oil Spill Response Capabilities: A Proposed International Guide for Oil Spill Response Planning and Readiness Assessment”, a guideline developed for the 2008 International Oil Spill Conference. RETOS™ adapts evaluation criteria according to the type of OSR program to be assessed.Seven different scopes from two perspectives (government and industry) are considered, including facilities, companies' business lines, and government national programs.For each scope there are three possible assessment levels for which OSR planning and readiness assessment criteria become increasingly more demanding.Each level contains criteria in 10 different categories (topic areas). Training workshops on RETOS™ were held during 2011 and 2012. Field tests were conducted by experts and surveys were conducted among users including companies, governments and consultants. Feedback from workshops and the practical application of RETOS™ provided recommendations for upgrades that were reviewed by ARPEL. Subsequently, a proposal to upgrade RETOS was made to the IOSC Executive Committee, which decided to support the endeavor. This paper describes the upgraded version of RETOS and its availability. The upgraded version of RETOS™ has garnered interest from several institutions that contributed to its completion as reviewers: a global Tier 3 organization (OSRL), Caspian and Black Sea's OSPRI, GI WACAF, and IPIECA. This multi-institutional review increased awareness of these readiness assessment tools, is expected to further expand worldwide awareness of the ARPEL Manual and RETOS™, and provides improved OSR planning and readiness management for industry and governments alike. A unique tool that is freely downloadable from the internet, the upgraded RETOS™ is being launched at the 2014 IOSC.


Sign in / Sign up

Export Citation Format

Share Document