scholarly journals A Tool For Comparing Relative Risks to Ecological Components Associated With Different Oil Spill Response Options

Author(s):  
Michael Bock ◽  
Hilary Robinson ◽  
Richard Wenning ◽  
Deborah French-McCay ◽  
Jill Rowe ◽  
...  

ABSTRACT Subsea dispersant injection (SSDI) applied to a deepwater blowout has been shown to be a highly efficient oil spill response (OSR) tool that, under appropriate conditions, can substantially lessen and delay oil surfacing as well as reduce the persistence of surface oil slicks. Bock et al. (2018) explored the relative ecological and societal risks associated with integration of SSDI into OSR strategies in the northern Gulf of Mexico using a comparative risk assessment (CRA) desktop analysis tool. The CRA analysis tool was developed with regulatory and stakeholder engagement and communication in mind; the user interface and emphasis on visualization of the assessment results were intended to facilitate rapid examination of the consequences of different spill scenarios in the presence and absence of SSDI and other OSR technologies. Using the CRA tool, decision makers are now better able to predict the nature and extent of the likely consequences to shoreline and aquatic valued ecological components (VECs) and environmental compartments (ECs), and examine the relative consequences of deploying different response technologies. The CRA tool has been substantially improved and has been redesigned from an Excel spreadsheet into a web-based application with enhanced interactive data visualizations and collaboration tools. The new web-based CRA tool is based on the Shiny application framework, an R based open source system for building interactive web-based applications. The updated CRA tool (https://nert.shinyapps.io/CRA_viewer/) now includes improved visualizations of the oil spill modeling results, depictions of the spatial footprint of different ECs, and the interactive exploration of the CRA results and intermediate calculations. Stakeholders are able to drill down into the components of the analysis and more easily explore the parameters that drive CRA scores, as well as explore alternative scoring options. The tool has also been modified to facilitate updating the CRA tool for new oil spill scenarios and OSR options. This web-based interactive CRA tool greatly enhances the usability of CRA as a collaborative tool for evaluating OSR options during planning and can also be used to inform the evaluation of response options during planning, training, and during an incident.

Author(s):  
Per Johan Brandvik ◽  
Jørgen Skancke ◽  
Ragnhild Daae ◽  
Kristin Sørheim ◽  
Per S. Daling ◽  
...  

Abstract The low oil recovery rates reported during Macondo (3–5% of the released oil) have caused discussions regarding the efficiency of mechanical recovery compared to other oil spill response options. These low recovery rates have unfortunately been used as reference recovery rates in several later modelling studies and oil spill response analysis. Multiple factors could explain these low rates, such as operational priorities, where dispersants and/or in situ burning are given priority before mechanical recovery; extended safety zones; availability of adequate equipment and storage capacity of collected oil; the number of units available; the level of training and the available remote sensing support to guide operations. This study uses the OSCAR oil spill model to simulate a deep-water oil release to evaluate the effect of different response options both separately and in combination. The evaluated response options are subsea dispersant injection, mechanical recovery, and a combination of these. As expected, Subsea Dispersant Injection (SSDI) was highly effective and resulted in a significant reduction in residual surface oil (8% of released oil volume, versus 28% for the non-response option, NR). However, using large offshore oil recovery systems also reduced residual surface oil with a similar amount (9% of released oil volume). These results deviate significantly from the efficiency numbers reported after the Macondo incident and from later modelling studies scaled after the Macondo recovery rates. The increased efficiency of mechanical reported in this study is mainly due to inclusion of updated descriptions of response capabilities, reduced exclusion zone, a more realistic representation of surface oil distribution and modelling of response units' interactions with oil, (efficient oil recovery only on thick parts of the oil slick). The response capabilities and efficiency numbers for the different response options used in this study are based on equipment specifications from multiple response providers and authorities (Norwegian Clean Seas organisation (NOFO), Oil Spill Response (OSRL), Norwegian Coastal Administration (NCA), US Bureau of Safety and Environmental Enforcement (BSEE) and others). These capabilities are justified by well-established contingency plans, offshore exercises and annual equipment performance testing with oil.


1997 ◽  
Vol 1997 (1) ◽  
pp. 881-885 ◽  
Author(s):  
Scott B. Robertson ◽  
Alexis Steen ◽  
Robert Pavia ◽  
LCDR David Skewes ◽  
Ann Hayward Walker

ABSTRACT When planning response activities for an oil spill, decision makers must react to a wide range of circumstances. Decisions will vary depending on the type of petroleum product spilled and the nature of the impacted habitat. Response decisions will be based on tradeoffs dealing with the environmental consequences of the spilled oil and the response method selected, as well as the efficiency and effectiveness of the method. A new manual, Marine Oil Spill Response Options for Minimizing Environmental Impacts, is being jointly produced by industry and government to facilitate decision making for both prespill planning and incident response. Guidance will be provided through matrix tables indicating the relative environmental consequences of the different response options used for various categories of oil in open water and shoreline habitats. This paper describes the contents of the new manual.


2001 ◽  
Vol 2001 (2) ◽  
pp. 883-890 ◽  
Author(s):  
Christopher H. Barker ◽  
William P. Healy

ABSTRACT The U.S. Navy is in the process of re-evaluating its oil spill response preparedness. As part of that effort, the Navy and the National Oceanic and Atmospheric Administration (NOAA) have teamed up to continue development of a tool designed to help planners assess their response effectiveness: the Trajectory Analysis Planner (TAP). TAP is an interface to a database of thousands of modeled oil spill trajectories, an ensemble of trajectories that represent the population of all possible spills. The TAP interface helps response planners understand characteristics of the possible oil spills in a given region. With this understanding, they can not only plan for one or a few possible high-impact events, but can determine the best overall plan for many events, across a large spectrum of probabilities and levels of impact. This paper is the result of the joint NOAA-Navy project to extend the capabilities of TAP. The capabilities and interface of the current version of the program (TAP II) are presented, along with some of its limitations. The need and direction of the development of a new version (TAP III) that will address some of these limitations is discussed. This future approach will allow planners to assess how different response options are likely to influence the ultimate impact of an oil spill in a region.


Author(s):  
Deborah French-McCay ◽  
Deborah Crowley ◽  
Jill Rowe ◽  
Michael Bock ◽  
Hilary Robinson ◽  
...  

ABSTRACT The goal of oil spill response is to mitigate the overall impacts of spilled oil on ecological and socioeconomic resources. Surface and subsea dispersant applications are effective tools that remain controversial after decades of research and discussion. The tradeoff that dispersants potentially increase effects on water column and benthic communities while reducing floating and nearshore/shoreline oil exposure is recognized, but inevitably are qualitatively considered when subjectivity and stakeholder interests prevail. To be objective and transparent, we developed a quantitative approach using oil spill modeling to evaluate response alternatives in a Comparative Risk Assessment (CRA) framework where the fractions of resources potentially exposed are compared, along with their recovery potential. The model quantifies exposure as water surface area, shoreline area and water volume exposed above thresholds of concern, multiplied by duration of exposure, in each environmental compartment. These exposure metrics (i.e., area-days or volume-days) are multiplied by relative densities across the environmental compartments to evaluate the fractions of the resources exposed in each modeled scenario. The fractions of resources exposed, along with their recovery potential, inform decisionmakers using a Spill Impact Mitigation Assessment (SIMA) approach with quantitative estimates of potential consequences, which they may consider along with stakeholder values. Previously, we evaluated a deepwater blowout in the Gulf of Mexico, assuming no intervention or various response options (mechanical recovery, in-situ burning, surface dispersant application, and subsea dispersant injection [SSDI]). The findings were that inclusion of SSDI reduced human and wildlife exposure to volatile organic compounds; dispersed oil into a large water volume at depth; enhanced biodegradation; and reduced surface water, nearshore and shoreline exposure to floating oil and entrained/dissolved oil in the upper water column. Tradeoffs included increased exposures at depth. However, since organisms are less abundant at depth, overall exposure of valued ecosystem components was minimized by use of SSDI. Follow-up modeling shows the benefits of SSDI are due to reduction of the oil droplet sizes released to the water column. Droplet sizes are sensitive to oil and gas release rates, release depth, orifice size and dispersant-to-oil ratio. The exposure metrics resulting from a matrix of scenarios varying these inputs and response actions are expected to be generally representative of the fate and behavior of oil and gas blowouts in the offshore areas of the Gulf of Mexico, as well as other regions with similar oceanographic conditions.


2018 ◽  
Vol 133 ◽  
pp. 984-1000 ◽  
Author(s):  
Michael Bock ◽  
Hilary Robinson ◽  
Richard Wenning ◽  
Deborah French-McCay ◽  
Jill Rowe ◽  
...  

2017 ◽  
Vol 2017 (1) ◽  
pp. 431-446

ABSTRACT In a situation where oil is spilled on the Norwegian Continental Shelf (NCS) the operator is responsible for the oil spill response. To do this in a robust and efficient way Norwegian Clean Seas Association for Operating Companies (NOFO) handles the oil spill response on behalf of all member companies. Handling an oil spill response situation in all its forms from offshore incident to beach restoration involves many different resources, skills and people. Introducing Incident Command System (ICS) as the command system for this task even increases the amount of training we need to do. How can NOFO achieve the optimal training of our common and shared response resources in a time where focus is on an effective and robust response? Having an overview of the different response needs and response plans NOFO coordinates activity, training and exercises in an efficient way. This is done with the aid of NOFO’s operative plan. The plan describes every resource with a performance requirement and puts it in to a response context. This gives NOFO a foundation to build a response that is structured and cost efficient for our members. Furthermore, this enables NOFO to tailor our training and exercises from the individual responder/resource to the complex large-scale field exercise which involves typically 250–350 people from numerous different operating companies, municipalities, governmental and private responders. This paper will describe how we plan, train and exercise on the NCS in order to be prepared for response in an efficient and robust way.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2561-2580
Author(s):  
Angeline Morrow ◽  
Christopher Pfeifer ◽  
Victoria Broje ◽  
Rachel Grunberg

ABSTRACT #2017-204: There is a growing recognition of the role science plays in supporting oil spill response coupled with increasing reliance on data-driven management and decision-making approaches. Collecting samples for analysis of hydrocarbons and other chemicals potentially used during oil spill response (e.g., dispersants) has become common place on many spills. While the rationale and approaches for oil spill sampling may be well known to experienced chemists and environmental scientists, the response community is still gaining experience in integrating sampling programs into dynamic oil spill response and decision-making. This paper reviews common sampling objectives for three key aspects of spill response: operational decision-support, environmental impact assessment (including natural resource damage assessment), and source identification. These broad categories span a range of interrelated sub-topics including, among others, public/worker health and safety; understanding how physical and chemical properties of oil influence selection of response options; monitoring cleanup effectiveness, especially for alternative response technologies such as dispersants; identifying and differentiating between spill and non-spill pollution sources; and evaluating potential impacts to resources at risk. Methods for achieving sampling objectives, including development of Sampling and Analysis Plans, are discussed with the goal of increasing awareness among response managers and improving response capability among staff who may be tasked with sampling support during training exercises or actual incidents. Relevant considerations for study design, collection methods, and analytical parameters are also reviewed.


2014 ◽  
Vol 2014 (1) ◽  
pp. 1163-1171
Author(s):  
Thomas Coolbaugh ◽  
Erik DeMicco ◽  
Emily Kennedy

ABSTRACT During the response to the Macondo Well release in the Gulf of Mexico in 2010, it became evident fairly quickly that there was a potential disconnect between existing scientifically-based information relating to the use of oil spill dispersants and the information that was readily available to the general public, the media, and government officials. At best, both sets of information were aligned and provided a valuable perspective to those who sought an increased understanding of the workings of oil spill response tools. At worst, there was a large misalignment and the information that was available to the public did not accurately reflect the known science of what dispersants have been designed to achieve. In this latter case, conclusions about dispersant use may have been formed incorrectly, providing a backdrop upon which individuals were not able to develop an informed opinion regarding the use of dispersants. In the case where incomplete and potentially unbalanced information is used to inform the public, it is possible that negative effects will result, i.e., opinions may be formed based on fear of the unknown, causing a delayed or less than optimal decision making process. While it is recognized that decisions made during a spill response may be challenging and may involve an environmental trade-off, an informed public can be a valuable asset during the stages of an emergency response when the pros and cons of the specific response options are being debated. To assist with an informed dialog, it is important to have materials available that accurately reflect the scientific principles upon which they are based, but without requiring extensive study of their details for a general understanding of their primary assumptions and conclusions. This paper summarizes recent efforts to develop readily available materials that can provide a better understanding of the use of dispersants during an offshore oil spill response. These efforts have been focused on developing simple yet effective tools which describe dispersants within the framework of an oil spill response tool box and the scenarios in which these tools may be used for the most positive environmental effect.


1999 ◽  
Vol 1999 (1) ◽  
pp. 985-987 ◽  
Author(s):  
Tim Wadsworth ◽  
Brian Dicks ◽  
Clément Lavigne

ABSTRACT Oil spills may contaminate both mariculture facilities and livestock. Prevention of oiling should therefore be afforded a high priority. Given appropriate conditions, this may be achieved by the traditional spill response measures. However, a number of self-help response options are open to mariculturalists, that may avoid or limit the effects of spilled oil. These include the relocation of cages, transfer of stock, and early harvest, although such measures are only likely to be successful if a well-prepared contingency plan exists. The advantages and drawbacks of each of these approaches in the context of oil spill response are discussed.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2017-351 ◽  
Author(s):  
Hilary Robinson ◽  
William Gardiner ◽  
Richard J. Wenning ◽  
Mary Ann Rempel-Hester

ABSTRACT #2017-351 When there is risk for oil release into the marine environment, the priority for planners and responders is to protect human health and to minimize environmental impacts. The selection of appropriate response option(s) depends upon a wide range of information including data on the fate and behavior of oil and treated oil, the habitats and organisms that are potentially exposed, and the potential for effects and recovery following exposure. Spill Impact Management Assessment (SIMA; a refinement of Net Environmental Benefits Analysis, or NEBA, in the context of oil spill response) and similar comparative risk assessment (CRA) approaches provide responders a systematic method to compare and contrast the relative environmental benefits and consequences of different response alternatives. Government and industry stakeholders have used this approach increasingly in temperate and subtropical regions to establish environmental protection priorities and identify response strategies during planning that minimize impacts and maximize the potential for environmental recovery. Historically, the ability to conduct CRA-type assessments in the Arctic has been limited by insufficient information relevant to oil-spill response decision making. However, with an increased interest in shipping and oil and gas development in the Arctic, a sufficiently robust scientific and ecological information base is emerging in the Arctic that can support meaningful SIMA. Based on a summary of over 3,000 literature references on Arctic ecosystems and the fate and effects of oil and treated oil in the Arctic, we identify key input parameters supporting a SIMA evaluation of oil spill response in the Arctic and introduce a web portal developed to facilitate access to the literature and key considerations supporting SIMA.


Sign in / Sign up

Export Citation Format

Share Document