Analysis of Wind Pressure Coefficient for Spatial Structure Roofs by Wind Load Standards and Wind Tunnel Tests

2017 ◽  
Vol 17 (4) ◽  
pp. 103-113 ◽  
Author(s):  
Dong-jin Cheon ◽  
◽  
Sung-Won Yoon
2012 ◽  
Vol 256-259 ◽  
pp. 788-791
Author(s):  
Zhi Xiang Yin ◽  
Yu Zhang

Open ended cantilevered roof is different from enclosed roof, because its change of wind pressure distribution is complex, and the wind directions have great influence on it. Up to now, for the characteristics of the structure are very complicated, there is no appropriate wind load model can be used in design, especially under typhoon, a specific wind field. So it is necessary to study the characteristics of wind load on open ended cantilevered roofs of typhoon. Using FLUENT and Computational Fluid Dynamics technology, based on the conventional, Tianpu’s and Shiyuan’s turbulence intensity of the typhoon scenario, a numerical simulation of wind flow around a large-span cantilevered roof was carried out. Analyzed different wind angles of the wind pressure distribution regularities on large-span cantilevered roof. The paper determined the distribution of the surface wind pressure coefficient for the cantilevered roofs, as well as the wind-sensitive parts of structures.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Yi Zhou ◽  
Yuanqi Li ◽  
Yingying Zhang ◽  
Akihito Yoshida

The characteristics of wind load on large-span roofs are complicated by their unique geometrical configurations and strong dependence on aerodynamic geometrical parameters and terrain type. However, there is rarely comprehensive research for characteristics of wind load on spatial structures due to aerodynamic geometrical parameters of roofs and terrain type. In this study, first, the effects of geometrical parameters of roofs and terrain type on the wind pressure distribution based on the data obtained from the existing wind tunnel tests were summarized. Then, the wind loads of full-scale structures were predicted by CFD, and the efficiency of numerical results was further verified by the available wind tunnel tests on spatial structures. Finally, with comparative analyses of the wind pressure distribution of the roofs predicted by CFD under different cases, the effects of shape ratios, especially rise-span ratio, height-span ratio, length-span ratio, and so on, and terrain type on the wind pressure field of typical spatial structures were presented. It can be beneficial to wind-resistant design of structures and can be provided as reference for aerodynamic design optimum of span spatial structures.


Author(s):  
Ying Sun ◽  
Lin Yang ◽  
Yue Wu

The distribution and fluctuation of wind load on large-span dry coal sheds are complicated. Wind load on typical shape of roofs can be sometimes determined based on the wind tunnel tests carried out on roofs of similar shape. To expand the application scope of the test data, Generalized Regression Neural Network (GRNN) is introduced. The prediction models on large-span dry coal are given, where the wind load is expressed by eight parameters: mean, RMS, skewness, kurtosis of wind pressure coefficients, three auto-spectral parameters (including descendent slope in high frequency range, peak reduced spectrum and reduced peak frequency) and coherence exponent for cross-spectra. Cross validation and trails are carried out to determine the parameter in the GRNN model. Further, the wind load prediction is applied on a dry coal shed shell. The wind-induced responses are calculated and compared with the results of wind tunnel tests, with extremely close result. Therefore, it can be concluded that GRNN is feasible in predicting wind load on roof structures.


2020 ◽  
Vol 310 ◽  
pp. 00013 ◽  
Author(s):  
Ivana Veghova ◽  
Olga Hubova

This article deals with experimental investigation of air flow around in – line standing circular cylinders and influence of nearby standing hall on external wind pressure distribution. The wind pressure distribution on the structures is an important parameter in terms of wind load calculation. For vertical circular cylinders in a row arrangement only wind force coefficient is possible find in Eurocode. 1991-1-4. External wind pressure coefficient depends on wind direction and the ratio of distance and diameter b. Influence of nearby standing structure is not possible find in Eurocode. The series of parametric wind tunnel studies was carried out in Boundary Layer Wind Tunnel (BLWT) STU to investigate the external wind pressure coefficient in turbulent wind flow. Experimental measurements were performed in BLWT for 2 reference wind speeds, which fulfilled flow similarity of prototype and model. We have compared the results of free in - line standing 3 circular cylinder and influence of hall on distribution of wind pressure at 3 height levels in turbulent wind flow and these results were compared with values in EN 1991-1-4.


2014 ◽  
Vol 638-640 ◽  
pp. 228-232 ◽  
Author(s):  
Jun Liu ◽  
Yuan Quan Yang ◽  
Yan Lei Sun ◽  
Bin He

The main research methods to predict and research wind loads on buildings at home and abroad include wind tunnel tests, field measurement and numerical simulation. However, the wind tunnel tests and field measurement require big funds, long cycle and complicated measurement. Moreover, numerical simulation technology is quite mature. In this paper, based on fluid dynamics software CFD and criteria Reynolds k-ε turbulence model, wind field of the village flat roof with parapet is studied using the numerical simulation technology. Furthermore, the wind pressure data in different wind angles are processed and analyzed. The results show that wind angle has a significant impact on the wind pressure and its distribution. When the wind angle is 0 °, the air pressure-fluctuation in each node of the roof is small, and the pressure coefficient is steady between -1.50 and -2.00. When the wind angle is 45 °, the air pressure fluctuation in each node of the roof is large, and the pressure coefficient fluctuates between -0.8 and -3.0. When the wind angle is 90 °, the wind pressure-fluctuation in each node of the roof is equal to the fluctuation between 0 ° and 45 °wind direction angle, and the wind pressure coefficient fluctuates between -0.7 and -1.7. When incoming flow is along the asymmetric axis, the wind pressure-fluctuation is large, and the wind pressure is greater than that in the large negative pressure zone which is along the symmetry axis, which can bring serious damage on the roof.


2012 ◽  
Vol 204-208 ◽  
pp. 865-868
Author(s):  
Cai Hua Wang ◽  
Hui Jian Li ◽  
Jian Feng Wu

For numerical wind tunnel method has the advantages of low cost, fast speed, the more comprehensive results, the paper using CFD knowledge and the FLUENT software, using RSM turbulence model, SIMPLE algorithm, simulation class D landform, to have numerical simulation of average wind pressure coefficient for of the circular planar and saddle roof building ,which the current code for the design of building structures did not give, to provide reference for determining the average wind pressure coefficient of the circular planar and saddle roof building .


2011 ◽  
Vol 137 ◽  
pp. 167-174
Author(s):  
Xing Qian Peng ◽  
Chang Gui Qiao ◽  
Yan Hong Chen

The wind interference characteristic of six buildings in two rows under different spacing (including Sx、Sy ) was Systematically studied by wind-tunnel experiment and numerical simulation. The average wind pressure coefficient and interference factor of the surfaces of each building in the residential district form was obtained, and the results can be provided as reference to the wind-resistant design of residential district.


Sign in / Sign up

Export Citation Format

Share Document