WIND LOAD PREDICTION OF LARGE-SPAN DRY COAL SHEDS BASED ON GRNN AND ITS APPLICATION

Author(s):  
Ying Sun ◽  
Lin Yang ◽  
Yue Wu

The distribution and fluctuation of wind load on large-span dry coal sheds are complicated. Wind load on typical shape of roofs can be sometimes determined based on the wind tunnel tests carried out on roofs of similar shape. To expand the application scope of the test data, Generalized Regression Neural Network (GRNN) is introduced. The prediction models on large-span dry coal are given, where the wind load is expressed by eight parameters: mean, RMS, skewness, kurtosis of wind pressure coefficients, three auto-spectral parameters (including descendent slope in high frequency range, peak reduced spectrum and reduced peak frequency) and coherence exponent for cross-spectra. Cross validation and trails are carried out to determine the parameter in the GRNN model. Further, the wind load prediction is applied on a dry coal shed shell. The wind-induced responses are calculated and compared with the results of wind tunnel tests, with extremely close result. Therefore, it can be concluded that GRNN is feasible in predicting wind load on roof structures.

2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Yi Zhou ◽  
Yuanqi Li ◽  
Yingying Zhang ◽  
Akihito Yoshida

The characteristics of wind load on large-span roofs are complicated by their unique geometrical configurations and strong dependence on aerodynamic geometrical parameters and terrain type. However, there is rarely comprehensive research for characteristics of wind load on spatial structures due to aerodynamic geometrical parameters of roofs and terrain type. In this study, first, the effects of geometrical parameters of roofs and terrain type on the wind pressure distribution based on the data obtained from the existing wind tunnel tests were summarized. Then, the wind loads of full-scale structures were predicted by CFD, and the efficiency of numerical results was further verified by the available wind tunnel tests on spatial structures. Finally, with comparative analyses of the wind pressure distribution of the roofs predicted by CFD under different cases, the effects of shape ratios, especially rise-span ratio, height-span ratio, length-span ratio, and so on, and terrain type on the wind pressure field of typical spatial structures were presented. It can be beneficial to wind-resistant design of structures and can be provided as reference for aerodynamic design optimum of span spatial structures.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xiao-kun Jing ◽  
Yuan-qi Li

Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.


2013 ◽  
Vol 12 (2) ◽  
pp. 079-086
Author(s):  
Grzegorz Bosak

The paper summarizes the results of wind tunnel tests of the influence of aerodynamic interference on wind action of a high-rise building design in Warsaw. Measurements were accomplished in Wind Engineering Laboratory of Cracow University of Technology. Wind pressures on external surfaces of the building model were acquired in two different situations. Firstly, only the building model was placed in the tunnel working section, secondly, the building model with the nearest surroundings was taken under consideration. A study of the character of wind action differences caused by the nearest surroundings of the building was the main aim of the paper. Wind pressure coefficients on the external building surfaces and the difference of horizontal wind action on full scale were compared.


1985 ◽  
Vol 1 (2) ◽  
pp. 105-110 ◽  
Author(s):  
A. J. Dutt

This paper deals with the investigation of wind loading on the pyramidal roof structure of the Church of St Michael in Newton, Wirral, Cheshire, England, by wind tunnel tests on a 1/48 scale model. The roof of the model was flat in the peripheral region of the building while in the inner region there was a grouping of four pyramidal roofs. Wind tunnel experiments were carried out; wind pressure distribution and contours of wind pressure on all surfaces of the pyramid roofs were determined for four principal wind directions. The average suctions on the roof were evaluated. The highest point suction encountered was — 4q whilst the maximum average suction on the roof was —0·86q. The results obtained from wind tunnel tests were used for the design of pyramidal roof structures and roof coverings for which localised high suctions were very significant.


2022 ◽  
Vol 252 ◽  
pp. 113575
Author(s):  
Wentong Zhang ◽  
Yiqing Xiao ◽  
Chao Li ◽  
Qingxing Zheng ◽  
Yanan Tang

AIP Advances ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 075202
Author(s):  
Hee Joo Poh ◽  
Woei Leong Chan ◽  
Daniel J. Wise ◽  
Chi Wan Lim ◽  
Boo Cheong Khoo ◽  
...  

2014 ◽  
Vol 578-579 ◽  
pp. 177-179
Author(s):  
Zi Hou Yuan ◽  
Yi Chen Yuan ◽  
Wei Sun

This paper is to study the wind load of rotary reticulated shell by experimental methods. The article conduct rigid model experiments to reticulated shell, measure wind pressure distribution on shell’top. Similar conditions is to meet production model:geometric similarity,flow similarity , Reynolds number equal. These results can be used as a reference for the new version of the wind load criteria.


2018 ◽  
Vol 18 (12) ◽  
pp. 1850156
Author(s):  
Yi Zhou ◽  
Yuanqi Li ◽  
Akihito Yoshida

Flexible roof structures, such as membranes, are sensitive to wind action due to their flexibility and light weight. Previously, the effect of added mass on the vibration frequency of membrane structures has been experimentally tested. However, the effect of added mass on wind-induced vibration remains unclear. The purpose of this paper is to investigate the effect of added mass on the wind-induced vibration of a circular flat membrane based on wind tunnel tests. First, wind tunnel tests were conducted to obtain wind pressure distribution from the rigid model and wind-induced vibration from the aeroelastic model of a circular flat membrane. Secondly, a dynamic finite element analysis for the proposed added mass model was conducted to obtain the wind-induced vibration of the membrane structure. Then, with the wind pressure distribution obtained from the rigid model tests, dynamic analysis was conducted either with or without consideration of the effect of added mass. According to the dynamic analysis results and the wind tunnel test results, it is clear that considering the effect of added mass in dynamic analysis can significantly improve the accuracy of a wind-induced response. Such an effect is more significant at the windward than the central zone. The inclusion of added mass can result in a larger displacement response as wind velocity increases but a smaller response as the prestress level increases.


Sign in / Sign up

Export Citation Format

Share Document