scholarly journals Ultrasound Assisted Sonochemical Decomposition of Methyl Orange in the Presence of H2O2 and CCl4

Author(s):  
J. Ara ◽  
M. Ashifuzzaman ◽  
M. J. Hossain ◽  
S. M. A. Razzak ◽  
S. Monira ◽  
...  

Methyl orange (MO) is an orange azoic dye; which has transition range from 3.1 to 4.4. Sonochemical decomposition of methyl orange in the presence of H2O2 and CCl4 has given effective result to reclaim water from the effluents released by the industries. The aim of this research was to investigate the effective condition for the decomposition of MO in the presence or absence of additives. For this, 50 mg/L solution of MO was sonicated in the presence and absence of different additives. It was clearly confirmed that the rates of sonochemical decomposition of MO increased with increasing the concentration in both cases of H2O2 and CCl4. The combination of advanced oxidation processes (AOPs) namely hydrogen per-oxide and carbon tetra-chloride with sonolysis harvests the decomposition of wide spectrum of organic contaminants. The combination of sonolysis with H2O2 and CCl4 enhances the production of non-selective radicals to improve the decomposition process. The AOPs is technically feasible and also economic. Based on the results, it was suggested that the rate of MO decomposition can be effectively enhanced by the sonolysis of CCl4 and also for H2O2. It was possible to include order- MO+200 µL H2O2 > MO+100 µL H2O2 > MO+20 µL H2O2 > MO; MO+200 µL CCl4 > MO+100 µL CCl4 > MO+20 µL CCl4 > MO.

Author(s):  
Zahia Benredjem ◽  
Karima Barbari ◽  
Imene Chaabna ◽  
Samia Saaidia ◽  
Abdelhak Djemel ◽  
...  

Abstract The Advanced Oxidation Processes (AOPs) are promising environmentally friendly technologies for the treatment of wastewater containing organic pollutants in general and particularly dyes. The aim of this work is to determine which of the AOP processes based on the Fenton reaction is more effective in degrading the methyl orange (MO) dye. The comparative study of the Fenton, photo-Fenton (PF) and electro-Fenton (EF) processes has shown that electro-Fenton is the most efficient method for oxidizing Methyl Orange. The evolution of organic matter degradation was followed by absorbance (discoloration) and COD (mineralization) measurements. The kinetics of the MO degradation by the electro-Fenton process is very rapid and the OM degradation rate reached 90.87% after 5 min. The influence of some parameters such as the concentration of the catalyst (Fe (II)), the concentration of MO, the current density, the nature and the concentration of supporting electrolyte was investigated. The results showed that the degradation rate increases with the increase in the applied current density and the concentration of the supporting electrolyte. The study of the concentration effect on the rate degradation revealed optimal values for the concentrations 2.10−5 M and 75 mg L−1 of Fe (II) and MO respectively.


1992 ◽  
Vol 27 (1) ◽  
pp. 69-96 ◽  
Author(s):  
William J. Cooper ◽  
Michael G. Nickelsen ◽  
David E. Meacham ◽  
Thomas D. Waite ◽  
Charles N. Kurucz

Abstract Advanced oxidation processes for the removal and destruction of hazardous organic chemicals in water and wastewater is a research area of increasing interest. Advanced oxidation processes generally consider the hydroxyl radical, OH-, the major reactive transient species. A novel process under development, utilizing high energy electrons, extends this concept to include the simultaneous formation of approximately equal concentrations of oxidizing and reducing species. Irradiation of aqueous solutions results in the formation of the aqueous electron, e−aq, hydrogen atoms, H-, and OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solution. This paper presents data on the removal of six common organic contaminants that have been studied at the Electron Beam Research Facility. The removal and the factors affecting removal were determined. This study focuses on halogenated ethenes, benzene and substituted benzenes. Removal is described in waters of different quality, including potable water, and raw and secondary wastewater. Removal efficiencies ranged from 85 to >99% and varied with water quality, solute concentration, dose and compound.


2015 ◽  
Vol 5 (3) ◽  
pp. 239-249 ◽  
Author(s):  
Laura Ward ◽  
Martin Page ◽  
John Jurevis ◽  
Andrew Nelson ◽  
Melixa Rivera ◽  
...  

The reuse of gray water for applications ranging from irrigation to showering is a viable means to reduce net water demand when water supplies are stressed. The objective of this study was to investigate the treatment of gray water using biologically active granular-activated carbon (GAC) and complementary technologies. Technologies were challenged individually or in combination using a synthetic gray water formulation based on NSF/ANSI Standard 350. Specific technologies included: GAC; biologically active GAC (BAC); a newly developed intermittently operated BAC (IOBAC) process; ion exchange (IX); coagulation with a cationic polymer; microfiltration; ultrafiltration (UF); and multi-barrier combinations thereof. For control of organic contaminants such as surfactants, BAC and IOBAC performed well over test periods as long as 6 months. Combinations of IOBAC treatment with coagulation pretreatment and UF post-treatment resulted in sustained chemical oxidant demand and turbidity value reductions in excess of 90 and 99.5%, respectively. Such an approach would be useful for gray water treatment for low tier applications like irrigation or toilet flushing, or as a pretreatment system upstream of reverse osmosis (RO) membranes and/or advanced oxidation processes for high tier reuse applications such as showering.


2018 ◽  
Vol 90 (9) ◽  
pp. 1487-1499 ◽  
Author(s):  
Olya Keen ◽  
James Bolton ◽  
Marta Litter ◽  
Keith Bircher ◽  
Thomas Oppenländer

Abstract The concept of Electrical Energy per Order (EEO) was introduced in 2001 as a figure of merit for evaluating the energy requirements of ultraviolet-based advanced oxidation processes (UV AOPs) used for the degradation of various organic contaminants. The EEO parameter represents the energy input into the reactor that can achieve an order of magnitude decrease in the concentration of a target contaminant in a unit volume. Since the introduction of this parameter, it has become increasingly popular among UV AOP researchers and practitioners. However, the EEO is often reported without important details that affect the parameter, making its interpretation difficult. The EEO depends on a variety of factors (e.g. the concentration and identity of the target contaminant and the amount of hydrogen peroxide added). Therefore, the EEO parameter needs to be reported in the literature with several other experimental details affecting the reactor performance and in a way that proper comparisons can be made between reactors across studies or manufacturers. This paper discusses the proper application of the EEO parameter for bench-, pilot-, and full-scale studies. Sucralose (artificial sweetener, C12H19Cl3O8) is proposed as a standard substance for reactor comparison.


Author(s):  
James R. Bolton ◽  
Keith G. Bircher ◽  
William Tumas ◽  
Chadwick A. Tolman

AbstractAdvanced oxidation processes (AOPs), which involve the in-situ generation of highly potent chemical oxidants such as the hydroxyl radical (•OH), have recently emerged as an important class of technologies for accelerating the oxidation and hence destruction of a wide range of organic contaminants in polluted water and air. We propose generally applicable standard figures-of-merit for comparing these waste treatment technologies. These figures-of-merit are based on electrical energy consumption within two phenomenological kinetic order regimes: one for high contaminant concentrations (electrical energy per mass, EE/M) and one for low concentrations (electrical energy per order of magnitude per m


Sign in / Sign up

Export Citation Format

Share Document