scholarly journals Segmenting and Classifiying the Brain Tumor from MRI Medical Images Based on Machine Learning Algorithms: A Review

Author(s):  
Omar Sedqi Kareem ◽  
Ahmed Khorsheed AL-Sulaifanie ◽  
Dathar Abas Hasan ◽  
Dindar Mikaeel Ahmed

A brain tumor is a problem that threatens life and impedes the normal working of the human body. The brain tumor needs to be identified early for the proper diagnosis and effective treatment planning. Tumor segmentation from an MRI brain image is one of the most focused areas of the medical community, provided that MRI is non-invasive imaging. Brain tumor segmentation involves distinguishing abnormal brain tissue from normal brain tissue. This paper presents a systematic literature review of brain tumor segmentation strategies and the classification of abnormalities and normality in MRI images based on various deep learning techniques, interbreeding. It requires presentation and quantitative analysis, from standard segmentation and classification methods to the best class strategies.

Author(s):  
Padmapriya Thiyagarajan ◽  
Sriramakrishnan Padmanaban ◽  
Kalaiselvi Thiruvenkadam ◽  
Somasundaram Karuppanagounder

Background: Among the brain-related diseases, brain tumor segmentation on magnetic resonance imaging (MRI) scans is one of the highly focused research domains in the medical community. Brain tumor segmentation is a very challenging task due to its asymmetric form and uncertain boundaries. This process segregates the tumor region into the active tumor, necrosis and edema from normal brain tissues such as white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF). Introduction: The proposed paper analyzed the advancement of brain tumor segmentation from conventional image processing techniques, to deep learning through machine learning on MRI of human head scans. Method: State-of-the-art methods of these three techniques are investigated, and the merits and demerits are discussed. Results: The prime motivation of the paper is to instigate the young researchers towards the development of efficient brain tumor segmentation techniques using conventional and recent technologies. Conclusion: The proposed analysis concluded that the conventional and machine learning methods were mostly applied for brain tumor detection, whereas deep learning methods were good at tumor substructures segmentation.


Author(s):  
Veeresh Ashok Mulimani ◽  
Sanjeev S. Sannakki ◽  
Vijay S. Rajpurohit

MRI technique is widely used in the field of medicine because of its high spatial resolution, non-invasive characteristics, and soft tissue contrast. In this review article, a systematic study has been conducted to analyze the performance and issues of various techniques for brain tumor segmentation. Latest research on BTS in MRI with the higher resolution is utilized for the systematic review. The high-resolution images increase execution time of the classification, and accuracy is the other problem in BTS. Still, there is some research lacking in accuracy on the brain segmentation. Few researchers carried out the classification of different kinds of tissues in the brain images and also on the prediction on growth of tumor. Each method has specific technique to improve the performance of the BTS, and these methods are compared with one another in terms of result. Research comparison helps to understand the proposed method with their achieved results. Clustering algorithms such as K-means and FCM are generally used for segmentation, and GA, ANN, ANFIS, FCNN, SVM are commonly used as classifiers.


Author(s):  
Sanjay Saxena ◽  
Puspanjali Mohapatra ◽  
Swati Pattnaik

Automated segmentation of tumorous region from the brain magnetic resonance image (MRI) is the procedure of extrication anomalous tissues from regular tissues, such as white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The process of accurate and efficient segmentation is still exigent because of the diversity of location, size, and shape of the tumorous region. Brain MRI provides metabolic process, psychological process, and descriptive information of the brain. Brain tumor segmentation using MRI is drawing the attention of the researchers due to its non-invasive nature and good soft tissue contrast of MRI sequences. The main motive of this chapter is to provide a broad overview of the methods of brain tumor segmentation based on MRI. This chapter provides the information of the brain tumor, its types, brief introduction of the MRI, and its diverse types, and lastly, this chapter gives the brief overview with benefits and limitations about diverse techniques used for brain tumor segmentation by different researchers and scientists.


2021 ◽  
Author(s):  
Pitchai R ◽  
Supraja P ◽  
Razia Sulthana A ◽  
Veeramakali T

Abstract Segmentation of brain tumors is a daunting process comprising the delineation of heterogeneous cancerous tissues and diffuse types in anatomical representations of the brain. Deep learning techniques have recently made important strides in the segmentation of brain tumors. However, owing to the irregularity of the tumor, most of the deep learning-based segmentation techniques are not used directly for tumor detection. Although recent studies are capable of addressing the irregularity issue and retaining permutation invariance, many approaches struggle to catch the valuable high-dimensional local features of finer resolution. Inspired by the fuzzy learning methods and an analysis of the shortcomings of existing methods, an automated fuzzy neighborhood learning-based 3D segmentation technique has been proposed for the detection of cerebrum tumors in 3D images. In this technique, the fuzzy neighborhood function is deeply integrated with the proposed network architecture. This technique has been evaluated on BRATS 2013dataset. The simulation results show that the proposed brain tumor detection technique is superior to other methods in the diagnosis of brain tumors with the dice coefficient of 0.85 and the Jaccard index of 0.74.


2021 ◽  
Vol 11 (1) ◽  
pp. 380-390
Author(s):  
Pradipta Kumar Mishra ◽  
Suresh Chandra Satapathy ◽  
Minakhi Rout

Abstract Segmentation of brain image should be done accurately as it can help to predict deadly brain tumor disease so that it can be possible to control the malicious segments of brain image if known beforehand. The accuracy of the brain tumor analysis can be enhanced through the brain tumor segmentation procedure. Earlier DCNN models do not consider the weights as of learning instances which may decrease accuracy levels of the segmentation procedure. Considering the above point, we have suggested a framework for optimizing the network parameters such as weight and bias vector of DCNN models using swarm intelligent based algorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA). The simulation results reveals that the WOA optimized DCNN segmentation model is outperformed than other three optimization based DCNN models i.e., GA-DCNN, PSO-DCNN, GWO-DCNN.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chih-Wei Lin ◽  
Yu Hong ◽  
Jinfu Liu

Abstract Background Glioma is a malignant brain tumor; its location is complex and is difficult to remove surgically. To diagnosis the brain tumor, doctors can precisely diagnose and localize the disease using medical images. However, the computer-assisted diagnosis for the brain tumor diagnosis is still the problem because the rough segmentation of the brain tumor makes the internal grade of the tumor incorrect. Methods In this paper, we proposed an Aggregation-and-Attention Network for brain tumor segmentation. The proposed network takes the U-Net as the backbone, aggregates multi-scale semantic information, and focuses on crucial information to perform brain tumor segmentation. To this end, we proposed an enhanced down-sampling module and Up-Sampling Layer to compensate for the information loss. The multi-scale connection module is to construct the multi-receptive semantic fusion between encoder and decoder. Furthermore, we designed a dual-attention fusion module that can extract and enhance the spatial relationship of magnetic resonance imaging and applied the strategy of deep supervision in different parts of the proposed network. Results Experimental results show that the performance of the proposed framework is the best on the BraTS2020 dataset, compared with the-state-of-art networks. The performance of the proposed framework surpasses all the comparison networks, and its average accuracies of the four indexes are 0.860, 0.885, 0.932, and 1.2325, respectively. Conclusions The framework and modules of the proposed framework are scientific and practical, which can extract and aggregate useful semantic information and enhance the ability of glioma segmentation.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 320
Author(s):  
Yue Zhao ◽  
Xiaoqiang Ren ◽  
Kun Hou ◽  
Wentao Li

Automated brain tumor segmentation based on 3D magnetic resonance imaging (MRI) is critical to disease diagnosis. Moreover, robust and accurate achieving automatic extraction of brain tumor is a big challenge because of the inherent heterogeneity of the tumor structure. In this paper, we present an efficient semantic segmentation 3D recurrent multi-fiber network (RMFNet), which is based on encoder–decoder architecture to segment the brain tumor accurately. 3D RMFNet is applied in our paper to solve the problem of brain tumor segmentation, including a 3D recurrent unit and 3D multi-fiber unit. First of all, we propose that recurrent units segment brain tumors by connecting recurrent units and convolutional layers. This quality enhances the model’s ability to integrate contextual information and is of great significance to enhance the contextual information. Then, a 3D multi-fiber unit is added to the overall network to solve the high computational cost caused by the use of a 3D network architecture to capture local features. 3D RMFNet combines both advantages from a 3D recurrent unit and 3D multi-fiber unit. Extensive experiments on the Brain Tumor Segmentation (BraTS) 2018 challenge dataset show that our RMFNet remarkably outperforms state-of-the-art methods, and achieves average Dice scores of 89.62%, 83.65% and 78.72% for the whole tumor, tumor core and enhancing tumor, respectively. The experimental results prove our architecture to be an efficient tool for brain tumor segmentation accurately.


2019 ◽  
Vol 8 (4) ◽  
pp. 2051-2054

Medical image processing is an important task in current scenario as more and more humans are diagnosed with various medical issues. Brain tumor (BT) is one of the problems that is increasing at a rapid rate and its early detection is important in increasing the survival rate of humans. Detection of tumor from Magnetic Resonance Image (MRI) of brain is very difficult when done manually and also time consuming. Further the tumors assume different shapes and may be present in any portion of the brain. Hence identification of the tumor poses an important task in the lives of human and it is necessary to identify its exact position in the brain and the affected regions. The proposed algorithm makes use of deep learning concepts for automatic segmentation of the tumor from the MRI brain images. The algorithm is implemented using MATLAB and an accuracy of 99.1% is achieved.


2018 ◽  
pp. 2402-2419
Author(s):  
Jyotsna Rani ◽  
Ram Kumar ◽  
Fazal A. Talukdar ◽  
Nilanjan Dey

Image segmentation is a technique which divides an image into its constituent regions or objects. Segmentation continues till we reach our area of interest or the specified object of target. This field offers vast future scope and challenges for the researchers. This proposal uses the fuzzy c mean technique to segment the different MRI brain tumor images. This proposal also shows the comparative results of Thresholding, K-means clustering and Fuzzy c- means clustering. Dice coefficient and Jaccards measure is used for accuracy of the segmentation in this proposal. Experimental results demonstrate the performance of the designed method.


Sign in / Sign up

Export Citation Format

Share Document