scholarly journals Response of Growth, Yield and Essential Oil of Geranium Plants to Surface Irrigation and Humic Acid Treatments

2021 ◽  
pp. 39-56
Author(s):  
K. A. Hammam ◽  
Salwa S. S. AwadAlla ◽  
Tahany Noreldin

Water is among the most important factors affected growth, yield and quality of medicinal and aromatic plants since its deficiency may cause serious growth harms and yield losses. Egypt suffers from a scarcity of water, so each drop should be preserved. Therefore, the objective of the present study was to determine the suitable irrigation treatment (120, 100 and 80% ETo (evapotranspiration) and humic acid amounts (control), 1.0, 1.5 and 2.0 cm/L) that attain the highest growth, yield and essential oil of geranium (Pelargonium graveolens L. Herit Aiton) under surface irrigation in clay soil at El Kanater El Khairiya. Results showed that humic acid alleviated the deteriorative effect of water deficiency, where plants irrigated with 120% ETo and treated with 2.0 cm/L humic acid improved the growth characters in terms of plant height, number of branches, fresh, dry weights and volatile oil yield. While, the highest volatile oil percentage and proline content were recorded at 80% ETo with humic acid at 2.0 cm/L treatment during the two growing seasons. Results also showed that the applied irrigation water under 120% ETo treatment was 7192 m3/fed averaged over the two growing seasons attained the highest yield. The highest values of water use efficiency and water productivity were 14.1 and 10.0 averaged over the two growing seasons attained under 80% ETo and application of 2.0 cm/L humic acid. Thus, it can be concluded that the required irrigation water for geranium is under 120% ETo. However, under water deficiency, 80% ETo and 2.0 cm/L humic acid could be applied, which increase geranium yield by 24%, compared to the 120% ETo treatment averaged over the two growing seasons.

2020 ◽  
Vol 12 (17) ◽  
pp. 6779 ◽  
Author(s):  
Indranil Samui ◽  
Milan Skalicky ◽  
Sukamal Sarkar ◽  
Koushik Brahmachari ◽  
Sayan Sau ◽  
...  

In the coastal zone of the Ganges Delta, water shortages due to soil salinity limit the yield of dry season crops. To alleviate water shortage as a consequence of salinity stress in the coastal saline ecosystem, the effect of different water-saving (WS) and water-conserving options was assessed on growth, yield and water use of tomato; two field experiments were carried out at Gosaba, West Bengal, India in consecutive seasons during the winter of 2016–17 and 2017–18. The experiment was laid out in a randomized block design with five treatments viz., surface irrigation, surface irrigation + straw mulching, drip irrigation at 100% reference evapotranspiration (ET0), drip irrigation at 80% ET0, drip irrigation at 80% ET0 + straw mulching. Application of drip irrigation at 80% ET0 + straw mulching brought about significantly the highest fruit as well as the marketable yield of tomato (Solanum lycopersicum L.). The soil reaction (pH), post-harvest organic carbon, nitrogen, phosphorus and potassium (N, P and K) status and soil microbial population along with the biochemical quality parameters of tomato (juice pH, ascorbic acid, total soluble solids and sugar content of fruits) were significantly influenced by combined application of drip irrigation and straw mulching. Surface irrigation significantly increased the salinity level in surface and sub-surface soil layers while the least salinity development was observed in surface mulched plots receiving irrigation water through drip irrigation. The highest water productivity was also improved from drip irrigation at 80% ET0 + straw mulched plots irrespective of the year of experimentation. Such intervention also helped in reducing salinity stress for the tomato crop. Thus, straw mulching along with drip irrigation at 80% ET0 can be recommended as the most suitable irrigation option for tomato crop in the study area as well as coastal saline regions of South Asia. Finally, it can be concluded that the judicious application of irrigation water not only increased growth, yield and quality tomatoes but also minimized the negative impact of soil salinity on tomatoes grown in the coastal saline ecosystem of Ganges Delta.


2020 ◽  
Vol 41 (03) ◽  
Author(s):  
Sachin Himmatrao Malve ◽  
Ashok Saini ◽  
Praveen Rao V

Water is one of the most essential natural resource, which is often costly and limiting input particularly in arid and Semi-arid. Since water is the life line for accruing desired yield levels, its time of application, method of application and quantity applied levels besides saving water. Further, there is a need for judicious use of water to reap the maximum benefit from this limiting resource. Off late, amongst irrigation methods, drip irrigation plays a vital role in economizing irrigation water, higher water use efficiency and enhancing crop yield in water scarce areas. Many research findings also confirm considerable saving in irrigation water through adoption of precise irrigation method like drip irrigation. The response of wheat to surface check basin and drip irrigation is reviewed.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 420 ◽  
Author(s):  
Mohamed Ashour ◽  
Ahmed A. El-Shafei ◽  
Hanan M. Khairy ◽  
Doaa Y. Abd-Elkader ◽  
Mohamed A. Mattar ◽  
...  

We performed field experiments to evaluate the influence of two extraction treatments, seaweed (Pterocladia capillacea S.G. Gmelin) water extraction (WE) and ultrasound-assisted water extraction (USWE) at three concentrations (5%, 10%, and 15%), as well as control NPK traditional mineral fertilizer on the growth, yield, minerals, and antioxidants of Jew’s Mallow (Corchorus olitorius L.) during the two seasons of 2016 and 2017 in Egypt. Plant height, number of leaves, and fresh weight of WE10 treatment were the highest (p < 0.05) as 59.67 cm, 10.67 and 2.41 kg m−2 in 2016, respectively, and 57.33 cm, 11.00 and 2.32 kg m−2 in 2017, respectively. WE10 and USWE5 treatments produced the highest dry matter (17.07%) in 2016 and (16.97%) in 2017, respectively. WE10 plants had an increased water productivity of 41.2% relative to control plants in both seasons. The highest chlorophyll ‘a’ was recorded after the WE10 treatment in 2016 and 2017 (17.79 μg g−1 and 17.84 μg g−1, respectively). The highest levels of total antioxidant capacity, total phenolics, and total flavonoids were also recorded after the WE10 treatment. Application of WE10 boosted growth, yield, minerals, and antioxidants of Jew’s Mallow. The CROPWAT model was used to estimate the evapotranspiration, irrigation water requirements, and yield response to irrigation scheduling. Our data showed a yield reduction in the initial growth stage if a limited amount of water was provided. Therefore, irrigation water should be provided during the most important stages of crop development with the choice of effective irrigation practices to avoid water losses, as this helps to maximize yield.


AGROFOR ◽  
2019 ◽  
Vol 3 (3) ◽  
Author(s):  
Oumaima ASSOULI ◽  
Hamid EL BILALI ◽  
Aziz ABOUABDILLAH ◽  
Rachid HARBOUZE ◽  
Nabil El JAOUHARI ◽  
...  

Agriculture uses more than 80% of water resources in Morocco. The sector isinefficient in terms of water use due to the dominance of surface irrigation. Toaddress this issue, there have been efforts in Moroccan strategies to convert surfaceirrigation to localized one. This paper analyses the dynamics of conversion fromsurface irrigation to drip irrigation in Fez-Meknes region (north-eastern Morocco)through the lens of the Multi-Level Perspective (MLP) on socio-technicaltransitions. MLP framework suggests that transitions are the results of dialecticinteractions among a niche (cf. novelty of drip irrigation), a regime (cf. traditionalsystem of surface irrigation) and the socio-technical landscape (e.g. policies). MLPwas complemented with a multi-capital approach to better assess transitionimpacts. Results show that the area equipped with drip irrigation in Fez-Meknesregion increased from 2174 ha in 2008 to 39290 ha in 2016. Different programshave been implemented in the framework of the Green Morocco Plan to fosterirrigation transition e.g. the National Irrigation Water Saving Program (PNEEI),launched in 2007, aims to convert 550,000 ha to localized irrigation (e.g. dripirrigation) in 15 years. Thanks to these programs, financial and technical supporthas been provided to farmers to promote the adoption of water-saving irrigationtechniques and practices. Farm-level results show that transition to localizedirrigation decreases irrigation water use, increases yields and profitability (cf. grossmargin per ha), and improves water productivity. Despite an enabling policylandscape and positive transition impacts, surface irrigation is still maintained inthe region and farmers are reluctant to change for many reasons (e.g. age andeducation level, unclear land tenure, financial and administrative difficulties).Efforts are still needed to train farmers on irrigation scheduling and on the use ofsmart irrigation techniques to save water. Further research is required to betterunderstand current bottlenecks in the irrigation transition process and designappropriate and context-specific transition governance strategies.


2021 ◽  
Vol 12 (3) ◽  
pp. 142-150
Author(s):  
Payel Pal ◽  
◽  
Sanmay Kumar Patra ◽  
Ratneswar Ray ◽  
◽  
...  

Sustainability of quality fruit production in Indian jujube is adversely affected by improper irrigation and nutrient management. A field study comprising of four irrigation levels (drip irrigation at 0.8, 0.6 and 0.4 of pan evaporation (E0) and surface irrigation at 1.0 IW/CPE with 50 mm depth) and three nutrient levels (100% RDF, 75% RDF+25% RDF as vermicompost and 50% RDF+50% RDF as vermicompost) was conducted during 2018-19 (11 months) on jujube plant. Results showed that tallest tree (3.72 m), greatest tree circumference (0.32 m), maximum fruits tree-1 (563), highest fruit weight (15.5 g) and fruit yield tree-1 (8.42 kg) were recorded with drip irrigation at 0.8 E0 with 100% RDF. Minimum growth, yield components and yield were found with drip irrigation at 0.4 E0 with 50% RDF+50% RDF as vermicompost. Seasonal ETa was 373.6, 409.4 and 446.4 mm for drip irrigation at 0.4, 0.6 and 0.8 E0, respectively and 694 mm for surface irrigation. Maximum CWUE of 18.87 g tree-1 mm-1 was obtained with drip irrigation at 0.8 E0 with 100% RDF. About 55.7-75.5% water was saved by drip irrigations which could bring an additional area of 55.5-85.8% under drip irrigated jujube. Highest predicted yield of 9.02 kg tree-1 was accomplished with 278 mm irrigation water. This model approach could serve as a good guideline to yield potential decision in relation to limited irrigation water for jujube growers in the Indo-Gangetic plains or similar agro-climatic regions.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 297
Author(s):  
Jeet Chand ◽  
Guna Hewa ◽  
Ali Hassanli ◽  
Baden Myers

This study deals with the evaluation of the effects of deficit irrigation (DI) and water quality (WQ) on the vegetative and productive response of greenhouse-grown tomatoes (Lycopersicon esculentum Mill. cv. Izmir). A pot-based experiment was carried out over two growing seasons. Three WQ: (groundwater, recycled wastewater and a mix of both) were applied in four irrigation scenarios which targeted soil moisture content (SMC) maintaining at 60%, 70%, 80% and 100% of field capacity (FC). Results showed that both DI and WQ had significant effects on crop development, yield and water productivity. The highest values of plant height (186.0 ± 0.58 cm) and stem diameter (23.40 ± 0.02 mm) were found at 100% FC (control). Total yield ranged from 2.33 ± 0.03 kg/plant (60% FC) to 4.05 ± 0.06 kg/plant (control). However, mild water stress (SMC maintaining at 80% FC) showed a positive effect on irrigation water use efficiency (IWUE) without significant yield reduction compared to control. IWUE was at its maximum (31.77 ± 0.47 kg/m3) at 80% FC. A DI regime based on 80% FC could be an efficient irrigation strategy particularly in water-limiting condition. Recycled wastewater was superior among the three WQ for achieving a better crop growth, yield and water productivity at same DI level.


2020 ◽  
Vol 12 (3) ◽  
pp. 1100
Author(s):  
Marjan Vahabi Mashhor ◽  
Mahmoud Mashal ◽  
Seyyed Ebrahim Hashemi Garmdareh ◽  
Juan Reca ◽  
Maria Teresa Lao ◽  
...  

A sub-irrigated planter (SIP) is a container irrigation technique in which water is supplied to the crop from the bottom, stored in a saturated media-filled reservoir beneath an unsaturated soil, and then delivered by capillary action to the root zone. The aim of this study was to optimize the water management and to assess the performance of this technique in terms of water use efficiency, soil moisture, and solute distribution in comparison with surface irrigation in a Mediterranean greenhouse. The experiment consisted of four SIP treatments, with a constant water level in the bottom reservoir in order to evaluate the effect of two different irrigation salinities (1.2 and 2.2 dS m−1) and two depths of substrate profiles (25 and 15 cm). The results showed that SIP is capable of significantly improving both water-use efficiency and plant productivity compared with surface irrigation. Also, a 24% average reduction in water consumption was observed while using SIP. Moreover, SIPs with a higher depth were recommended as the optimum treatments within SIPs. The type of irrigation method affected the salinity distribution in the substrate profile; the highest salinity levels were registered at the top layers in SIPs, whereas the maximum salinity levels for the surface treatments were observed at the bottom layers. SIPs provide a practical solution for the irrigation of plants in areas facing water quality and scarcity problems.


Sign in / Sign up

Export Citation Format

Share Document