scholarly journals Effect of Pterocladia capillacea Seaweed Extracts on Growth Parameters and Biochemical Constituents of Jew’s Mallow

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 420 ◽  
Author(s):  
Mohamed Ashour ◽  
Ahmed A. El-Shafei ◽  
Hanan M. Khairy ◽  
Doaa Y. Abd-Elkader ◽  
Mohamed A. Mattar ◽  
...  

We performed field experiments to evaluate the influence of two extraction treatments, seaweed (Pterocladia capillacea S.G. Gmelin) water extraction (WE) and ultrasound-assisted water extraction (USWE) at three concentrations (5%, 10%, and 15%), as well as control NPK traditional mineral fertilizer on the growth, yield, minerals, and antioxidants of Jew’s Mallow (Corchorus olitorius L.) during the two seasons of 2016 and 2017 in Egypt. Plant height, number of leaves, and fresh weight of WE10 treatment were the highest (p < 0.05) as 59.67 cm, 10.67 and 2.41 kg m−2 in 2016, respectively, and 57.33 cm, 11.00 and 2.32 kg m−2 in 2017, respectively. WE10 and USWE5 treatments produced the highest dry matter (17.07%) in 2016 and (16.97%) in 2017, respectively. WE10 plants had an increased water productivity of 41.2% relative to control plants in both seasons. The highest chlorophyll ‘a’ was recorded after the WE10 treatment in 2016 and 2017 (17.79 μg g−1 and 17.84 μg g−1, respectively). The highest levels of total antioxidant capacity, total phenolics, and total flavonoids were also recorded after the WE10 treatment. Application of WE10 boosted growth, yield, minerals, and antioxidants of Jew’s Mallow. The CROPWAT model was used to estimate the evapotranspiration, irrigation water requirements, and yield response to irrigation scheduling. Our data showed a yield reduction in the initial growth stage if a limited amount of water was provided. Therefore, irrigation water should be provided during the most important stages of crop development with the choice of effective irrigation practices to avoid water losses, as this helps to maximize yield.

2020 ◽  
Vol 41 (03) ◽  
Author(s):  
Sachin Himmatrao Malve ◽  
Ashok Saini ◽  
Praveen Rao V

Water is one of the most essential natural resource, which is often costly and limiting input particularly in arid and Semi-arid. Since water is the life line for accruing desired yield levels, its time of application, method of application and quantity applied levels besides saving water. Further, there is a need for judicious use of water to reap the maximum benefit from this limiting resource. Off late, amongst irrigation methods, drip irrigation plays a vital role in economizing irrigation water, higher water use efficiency and enhancing crop yield in water scarce areas. Many research findings also confirm considerable saving in irrigation water through adoption of precise irrigation method like drip irrigation. The response of wheat to surface check basin and drip irrigation is reviewed.


2002 ◽  
Vol 53 (3) ◽  
pp. 339 ◽  
Author(s):  
Ketema Tilahun ◽  
D. Raes

The problem of designing farm irrigation systems is complicated by the fact that the return from a project is a function not only of the design variables, but also of the operation schedules. These operation decisions are not independent, as irrigation applications at any given time period affect the entire set of applications to be made in the future. An optimisation dynamic programming model, CSUDP, was used to analyse the effects of irrigation levels, yield response factors, and initial soil moisture on irrigation scheduling. The CSUDP model requires the following as input data: crop evapotranspiration, rainfall, soil moisture holding capacity, and length of crop sensitivity stages with corresponding yield response factors. Weekly irrigation scheduling, which maximises crop yield, was obtained for a given amount of irrigation water. It has been observed that irrigation scheduling that takes into account crop sensitivity stages reduces irrigation amounts by optimally distributing the irrigation water over the growing season. For some crops, simulation results show that water saving of about 50% resulted in yield reduction of only 25%. By varying yield response factors around the values given in literature, it was observed that increasing the yield response factor of a sensitivity stage decreases relative yield for a given amount of irrigation water. Though residual soil moisture contributed to the crop production under limited irrigation water availability, its effect on irrigation scheduling was found to be limited only to the first 2 sensitivity stages. This information can be of great importance in optimal irrigation water management under limited water conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1829
Author(s):  
Herminia Puerto ◽  
Miguel Mora ◽  
Bernat Roig-Merino ◽  
Ricardo Abadía-Sánchez ◽  
José María Cámara-Zapata ◽  
...  

Over the last three decades, a great investment effort has been made in the modernization of irrigation in the Valencian Community (Spain). The initial change from distribution networks to pressurized ones and the shift towards drip irrigation systems was followed by improvements in irrigation scheduling, based on agrometeorological data, soil water content sensors, and remote sensing. These improvements are considered adequate for increasing irrigation water use efficiency, but it is difficult to find systematic measurements to assess its impacts on irrigation adequacy along with irrigation productivity in fruit orchards. This work presents the results of a four year assessment of irrigation water and energy use efficiency along with water productivity of a recently established irrigation community in the province of Valencia (Spain). The study was carried out at the orchard level and focused on two fruit crops: persimmon and peach trees. Six irrigation performance indicators, relative water supply (RWS), relative irrigation supply (RIS), yield performance (Yp), global water productivity (WPoverall), output per unit irrigation water (OUI), and the percent of nitrogen fertilization obtained by irrigation water, were defined and calculated for years 2017 to 2020 in 104 persimmon and peach orchards. The results showed that most of the farmers irrigated below the crop water requirements, showing RWS and RIS values less than 1, and there was great variability among farmers, especially in WPoverall and OUI indicators.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 888 ◽  
Author(s):  
Christoph Studer ◽  
Simon Spoehel

Appropriate irrigation scheduling for efficient water use is often a challenge for small-scale farmers using drip irrigation. In a trial with 12 farmers in Sébaco, Nicaragua, two tools to facilitate irrigation scheduling were tested: the Water Chart (a table indicating required irrigation doses) and tensiometers. The study aimed at evaluating if and to what extent simple tools can reduce irrigation water use and improve water productivity in drip-irrigated vegetable (beetroot; Beta vulgaris L.) production compared with the farmers’ usual practice. Irrigation water use was substantially reduced (around 20%) when farmers irrigated according to the tools. However, farmers did not fully adhere to the tool guidance, probably because they feared that their crop would not get sufficient water. Thus they still over-irrigated their crop: between 38% and 88% more water than recommended was used during the treatment period, resulting in 91% to 139% higher water use than required over the entire growing cycle. Water productivity of beetroot production was, therefore, much lower (around 3 kg/m3) than what can be achieved under comparable conditions, although yields were decent. Differences in crop yield and water productivity among treatments were not significant. The simplified Water Chart was not sufficiently understandable to farmers (and technicians), whereas tensiometers were better perceived, although they do not provide any indication on how much water to apply. We conclude that innovations such as drip irrigation or improved irrigation scheduling have to be appropriately introduced, e.g., by taking sufficient time to co-produce a common understanding about the technologies and their possible usefulness, and by ensuring adequate follow-up support.


2016 ◽  
Vol 30 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Mahmoud M. Ibrahim ◽  
Ahmed A. El-Baroudy ◽  
Ahmed M. Taha

Abstract Field experiments was conducted to determine the best irrigation scheduling and the proper period for injecting fertilizers through drip irrigation water in a sandy soil to optimize maize yield and water productivity. Four irrigation levels (0.6, 0.8, 1.0 and 1.2) of the crop evapotranspiration and two fertigation periods (applying the recommended fertilizer dose in 60 and 80% of the irrigation time) were applied in a split-plot design, in addition to a control treatment which represented conventional irrigation and fertilization of maize in the studied area. The results showed that increasing the irrigation water amount and the fertilizer application period increased vegetative growth and yield. The highest grain yield and the lowest one were obtained under the treatment at 1.2 and of 0.6 crop evapotranspiration, respectively. The treatment at 0.8 crop evapotranspiration with fertilizer application in 80% of the irrigation time gave the highest water productivity (1.631 kg m−3) and saved 27% of the irrigation water compared to the control treatment. Therefore, this treatment is recommended to irrigate maize crops because of the water scarcity conditions of the studied area.


2002 ◽  
Vol 53 (10) ◽  
pp. 1155 ◽  
Author(s):  
I. Farré ◽  
M. J. Robertson ◽  
G. H. Walton ◽  
S. Asseng

Canola is a relatively new crop in the Mediterranean environment of Western Australia and growers need information on crop management to maximise profitability. However, local information from field experiments is limited to a few seasons and its interpretation is hampered by seasonal rainfall variability. Under these circumstances, a simulation model can be a useful tool. The APSIM-Canola model was tested using data from Western Australian field experiments. These experiments included different locations, cultivars, and sowing dates. Flowering date was predicted by the model with a root mean squared deviation (RMSD) of 4.7 days. The reduction in the period from sowing to flowering with delay in sowing date was accurately reproduced by the model. Observed yields ranged from 0.1 to 3.2 t/ha and simulated yields from 0.4 to 3.0 t/ha. Yields were predicted with a RMSD of 0.3–0.4 t/ha. The yield reduction with delayed sowing date in the high, medium, and low rainfall region (3.2, 6.1, and 8.6% per week, respectively) was accurately simulated by the model (1.1, 6.7, and 10.3% per week, respectively). It is concluded that the APSIM-Canola model, together with long-term weather data, can be reliably used to quantify yield expectation for different cultivars, sowing dates, and locations in the grainbelt of Western Australia.


2011 ◽  
Vol 47 (3) ◽  
pp. 509-527 ◽  
Author(s):  
A. S. KARUNARATNE ◽  
S. N. AZAM-ALI ◽  
G. IZZI ◽  
P. STEDUTO

SUMMARYSimulation of yield response to water plays an increasingly important role in optimization of crop water productivity (WP) especially in prevalent drought in Africa. The present study is focused on a representative crop: bambara groundnut (Vigna subterranea), an ancient grain legume grown, cooked, processed and traded mainly by subsistence women farmers in sub-Saharan Africa. Over four years (2002, 2006–2008), glasshouse experiments were conducted at the Tropical Crops Research Unit, University of Nottingham, UK under controlled environments with different landraces, temperatures (23 ± 5 °C, 28 ± 5 °C, 33 ± 5 °C) and soil moisture regimes (irrigated, early drought, late drought). Parallel to this, field experiments were conducted in Swaziland (2002/2003) and Botswana (2007/2008). Crop measurements of canopy cover (CC), biomass (B) and pod yield (Y) of selected experiments from glasshouse (2006 and 2007) and field (Botswana) were used to calibrate the FAO AquaCrop model. Subsequently, the model was validated against independent data sets from glasshouse (2002 and 2008) and field (Swaziland) for different landraces. AquaCrop simulations for CC, B and Y of different bambara groundnut landraces are in good agreement with observed data with R2 (CC-0.88; B-0.78; Y-0.72), but with significant underestimation for some landraces.


Sign in / Sign up

Export Citation Format

Share Document