High Pressure Processing of Chicken Meat: Change in Total Aerobic Counts after Pressure Treatment and During Chilled Storage

2014 ◽  
Vol 4 (5) ◽  
pp. 540-549
Author(s):  
Sami Bulut
Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1256
Author(s):  
Hansol Kim ◽  
Ah Hyun Jung ◽  
Sung Hee Park ◽  
Yohan Yoon ◽  
Beob Gyun Kim

The objectives of the present study were to determine the influence of thermal and non-thermal processing procedures on in vitro ileal disappearance (IVID) of dry matter (DM) and crude protein (CP) in chicken meat as dog foods using 2-step in vitro assays. In thermal processing experiments, IVID of DM and CP in chicken meat thermally processed at 70, 90, and 121 °C, respectively, with increasing processing time was determined. For non-thermal processing experiments, IVID of DM and CP in chicken meat processed by high-pressure, ultraviolet-light emitting diode (UV-LED), electron-beam, and gamma-ray was determined. Thermal processing of chicken meat at 70, 90, and 121 °C resulted in decreased IVID of CP (p < 0.05) as heating time increased. In non-thermal processing experiment, IVID of CP in chicken meat was not affected by high-pressure processing or UV-LED radiation. In vitro ileal disappearance of CP in electron-beam- or gamma-ray-irradiated chicken meat was not affected by the irradiation intensity. Taken together, ileal protein digestibility of chicken meat for dogs is decreased by thermal processing, but is minimally affected by non-thermal processing methods.


2009 ◽  
Vol 72 (1) ◽  
pp. 165-168 ◽  
Author(s):  
JOSEPH E. SCHLESSER ◽  
BRIAN PARISI

In 2003, the U.S. Department of Health and Human Services announced a new research program to develop technologies and strategies to prevent and minimize potential food safety and security threats. The threat of terrorist attacks against the nation's food supplies has created the need to study microorganisms not typically associated with foodborne illness. High-pressure processing has been proposed as a treatment to reduce Yersinia pestis and Francisella tularensis LVS levels in beverages. The objectives of this work were to determine the pressure resistance of Y. pseudotuberculosis 197 (surrogate for Y. pestis) and F. tularensis LVS (vaccine strain). For each bacterium, samples of ultrahigh-temperature pasteurized skim milk and pasteurized reduced-acid orange juice (pH ca. 4.2) were inoculated at a minimum level of 5 log CFU/ml. Ten-milliliter samples of the inoculated product were vacuum sealed in polyester pouches and subjected to pressures of 300 and 500 MPa for holding times ranging from 30 s to 6 min. One set of trials was performed at an initial temperature of 10°C and another at 25°C. Processed samples were immediately plated and enumerated. A pressure treatment of 300 MPa at 25°C for less than 6 min was not sufficient to achieve a 5-log reduction of Y. pseudotuberculosis 197 or F. tularensis LVS in milk. However, a pressure treatment of 500 MPa was effective at hold times as low as 30 s. Overall, F. tularensis LVS demonstrated less pressure resistance than Y. pseudotuberculosis 197. Based on these findings, a high-pressure process designed to inactivate 5 log CFU of Y. pseudotuberculosis 197 per ml and F. tularensis LVS in orange juice or milk should be set at or above 500 MPa with a hold time of 2 min or greater.


2006 ◽  
Vol 73 (2) ◽  
pp. 581-585 ◽  
Author(s):  
David H. Kingsley ◽  
Daniel R. Holliman ◽  
Kevin R. Calci ◽  
Haiqiang Chen ◽  
George J. Flick

ABSTRACT Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20°C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log10 PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5°C; a 5-min pressure treatment of 350 MPa at 30°C inactivated 1.15 log10 PFU of virus, while the same treatment at 5°C resulted in a reduction of 5.56 log10 PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5°C and 20°C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5°C was sufficient to inactivate 4.05 log10 PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.


Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 175 ◽  
Author(s):  
Man-Shin Shiu ◽  
Yuan-Tay Shyu ◽  
Sz-Jie Wu

γ-aminobutyric acid (GABA) is the chief inhibitory neurotransmitter in the central nervous system and of substantial physiological significance to mammals. The GABA content of plants is generally low; however, it increases significantly when plants encounter stress. The present study investigates the effects of flooding stress and high-pressure processing on GABA content enrichment in the vegetable soybean (Glycine max Merr.) cultivar Kaohsiung No. 9 and potential mechanisms. Results indicate that flooding stress increased the GABA content of vegetable soybean kernels, with the possible mechanism involving the upregulation of glutamic acid decarboxylase 5 (GAD5) and aminoaldehyde dehydrogenase (AMADH) and downregulation of succinate semialdehyde dehydrogenase (SSADH). High-pressure treatment increased the GABA content through increased GAD activity. A specific combination of flooding stress, high-pressure treatment, and storage treatment enhanced vegetable soybean GABA content up to 696.6 ± 65.7 mg/100 g. Flooding treatment prior to harvesting did not cause differences in consumption quality. These results show that flooding stress and high pressure treatment can increase GABA content and enhance the functional value of the vegetable soybean cultivar Kaohsiung No. 9.


2014 ◽  
Vol 80 (1) ◽  
pp. M142-M146 ◽  
Author(s):  
Dae-Hun Park ◽  
Jong-Gi Jung ◽  
Bo-Ram Jung ◽  
Gyeyeop Kim ◽  
Honggyun Lee ◽  
...  

2008 ◽  
Vol 71 (8) ◽  
pp. 1612-1618 ◽  
Author(s):  
M. RITZ ◽  
F. JUGIAU ◽  
M. FEDERIGHI ◽  
N. CHAPLEAU ◽  
M. de LAMBALLERIE

High pressure processing is a novel food preservation technology, applied for over 15 years in the food industry to inactivate spoilage and pathogenic microorganisms. Many studies have shown the differential resistance of bacterial cells to high pressure. Listeria monocytogenes is a bacterium able to grow at refrigerated temperature and to survive for a long time in minimally processed foods such as raw smoked fish. The freezing process does not cause significant decline of L. monocytogenes. The phase diagram of water under pressure permits a pressure treatment under subzero temperature, without the disadvantages of freezing for food quality. The aim of this study was to estimate if combined effects of pressure and subzero temperature could increase the destruction of L. monocytogenes in buffer and in smoked salmon. We investigated effects of high pressure processing (100, 150, and 200 MPa) combined with subzero temperatures (−10, −14, and −18°C) and pH (7.0 and 4.5). Results showed that the most effective high-pressure treatment to inactivate L. monocytogenes was 200 MPa, −18°C, and pH 4.5. The relevance of pressure holding time and the synergistic effect of pressure coupled with the subzero temperature to inactivate bacteria are highlighted. Modifications of physical properties (color and texture) were a lightening of color and an increase of toughness, which might be accepted by consumers, since safety is increased.


Sign in / Sign up

Export Citation Format

Share Document