Investigating the Effect of Copper Sulphate on Hydrogen Peroxide Bleaching with Hydrolysis on P/C Fabric Mechanical Properties

2021 ◽  
pp. 55-65
Author(s):  
J. Hayavadana ◽  
K. Samatha
TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 37-46 ◽  
Author(s):  
PEDRO E.G. LOUREIRO ◽  
SANDRINE DUARTE ◽  
DMITRY V. EVTUGUIN ◽  
M. GRAÇA V.S. CARVALHO

This study puts particular emphasis on the role of copper ions in the performance of hydrogen peroxide bleaching (P-stage). Owing to their variable levels across the bleaching line due to washing filtrates, bleaching reagents, and equipment corrosion, these ions can play a major role in hydrogen peroxide decomposition and be detrimental to polysaccharide integrity. In this study, a Cu-contaminated D0(EOP)D1 prebleached pulp was subjected to an acidic washing (A-stage) or chelation (Q-stage) before the alkaline P-stage. The objective was to understand the isolated and combined role of copper ions in peroxide bleaching performance. By applying an experimental design, it was possible to identify the main effects of the pretreatment variables on the extent of metals removal and performance of the P-stage. The acid treatment was unsuccessful in terms of complete copper removal, magnesium preservation, and control of hydrogen peroxide consumption in the following P-stage. Increasing reaction temperature and time of the acidic A-stage improved the brightness stability of the D0(EOP)D1AP bleached pulp. The optimum conditions for chelation pretreatment to maximize the brightness gains obtained in the subsequent P-stage with the lowest peroxide consumption were 0.4% diethylenetriaminepentaacetic acid (DTPA), 80ºC, and 4.5 pH.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hua Na ◽  
Guocheng Lv ◽  
Lijuan Wang ◽  
Libing Liao ◽  
Dan Zhang ◽  
...  

AbstractThe improper handling of smelting slag will seriously pollute the environment, and the unfilled roof of the goaf of the mine will threaten the safety of the mine. Expansion materials have attracted more and more attention because of their excellent properties. In this paper, copper-nickel smelting slag that has some active ingredients of gelling is used instead of traditional aggregate and some part of cement in order to reduce its pollution to the environment and its costs. For safety reasons, hydrogen peroxide was chosen as the foaming agent. Sodium silicate and hexadecyl trimethyl ammonium bromide (CTAB) are used as additives. Our results showed that after 28 days of curing, the material has better mechanical properties and the early compressive strength of the material was enhanced by sodium silicate. The efficiency of foaming was improved by CTAB. It also proves that copper–nickel smelting slag can be used in expansion material. At the same time, the utilization rate of the copper–nickel smelting slag of this formula can reach 70%, reduce its pollution to the environment.


2011 ◽  
Vol 236-238 ◽  
pp. 1307-1312
Author(s):  
Chao Jun Wu ◽  
Chuan Shan Zhao ◽  
Jun Li ◽  
Ke FU Chen

In this paper, the effect of microwave treatment on the hydrogen peroxide bleaching of Soda-AQ wheat-straw pulp was investigated. The results showed that microwave treatment could increase the brightness of the hydrogen peroxide bleached pulp. The fiber coarseness of microwave enhancing peroxide bleached pulp was higher than that of the peroxide bleached pulp. However, the arithmetic average fiber length, the length weighted average fiber length and weight weighted average fiber length of the former was lower than that of the latter. Fourier transform infra-red spectroscopy (FTIR) and X-ray diffraction (XRD) spectra showed that CrI(%) crystallinity of microwave enhancing peroxide bleached pulp was similar as that of the peroxide bleached pulp but all higher than that of the Soda-AQ wheat-straw pulp. N·O′KI infra-red crystalline index of microwave enhancing peroxide bleached pulp were lower than that of the peroxide bleached pulp. The FTIR spectra of lignin showed that the microwave treatment had some influences on the methoxyl and phenolic group in lignin.


2012 ◽  
Vol 37 (5) ◽  
pp. 526-531 ◽  
Author(s):  
CRG Torres ◽  
CF Ribeiro ◽  
E Bresciani ◽  
AB Borges

SUMMARY The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p<0.05). Color changes were significant for different tested bleaching therapies (p<0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p<0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration.


2021 ◽  
Vol 49 (4) ◽  
pp. 431-443
Author(s):  
Medhat Fawzy ◽  
Sara Ahmed ◽  
Tarek Khamis ◽  
Ahmed Arisha ◽  
doaa Abdel-Fattah

2007 ◽  
Vol 25 (3) ◽  
pp. 288-293 ◽  
Author(s):  
Sandra Abrantes ◽  
Emília Amaral ◽  
Ana Paula Costa ◽  
Anatoly A. Shatalov ◽  
Ana Paula Duarte

Sign in / Sign up

Export Citation Format

Share Document