Dipyridamole as an Antiviral Agent

Author(s):  
Angel S. Galabov
Keyword(s):  
2017 ◽  
Vol 26 (4) ◽  
pp. 381-386
Author(s):  
Mircea Manuc ◽  
Carmen M. Preda ◽  
Corneliu P. Popescu ◽  
Cristian Baicuș ◽  
Theodor Voiosu ◽  
...  

Background & Aims: Literature data suggest that HCV genotype-1b is present in 93-99% of the Romanian patients infected with hepatitis C virus (HCV). We present the genotyping tests recently performed on patients with HCV and advanced fibrosis eligible for the Direct-Acting Antiviral (DAA) therapy, as well as the prevalence of these cases across Romania.Methods: The genotyping method was performed on 7,421 HCV patients with advanced fibrosis. The detection method was automatic real time PCR platform M2000 (Abbott). Every subject was introduced into a database including age, sex, county and address.Results: Genotype 1b was almost exclusively present: 7,392/7,421 (99.6%). Genotype 1b patients were 19.6% from Bucharest, 49% were males, with a median age of 60 years. Genotype non-1b was encountered in 29/7,421 subjects (0.4%), 62% were males, 69% from Bucharest and the median age was 52 years. Most of the subjects (75%) were in the 6th and 7th age decade. The prevalence of these cases varied significantly across Romanian counties: the highest was in Bucharest (61.3/105), Bihor (47/105), Iasi (46/105) and Constanța (43/105), and the lowest in Ilfov (2.8/105), Harghita (3.7/105), Covasna (5.4/105) and Maramureș (8.8/105) (p<0.001).Conclusions: Genotype 1b is encountered in 99.6% of patients with chronic hepatitis C and advanced fibrosis from Romania. The presence of genotypes non-1b is more common in Bucharest, in males and at a younger age. There are significant differences regarding the distribution of these cases across Romania: the highest rates are in Bucharest, Bihor, Iasi and Constanta.Abbreviations: BMI: body mass index; DAA: direct-acting antiviral agent; GT: genotype; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; IDU: intravenous drug users; MELD: model for end stage liver disease; NASH: non-alcoholic steatohepatitis; SVR; sustained virologic response.


Author(s):  
EL- Assal I. A. ◽  
Retnowati .

Objective of the present investigation was enthused by the possibility to develop solid lipid nanoparticles (SLNs) of hydrophilic drug acyclovir. Also study vitro and vivo drug delivery. Methods: Drug loaded SLNs (ACV-SLNs) were prepared by high pressure homogenization of aqueous surfactant solutions containing the drug-loaded lipids in the melted or in the solid state with formula optimization study (Different lipid concentration, drug loaded, homogenization / stirring speed and compritol 888ATO: drug ratio). ACV - SLN incorporated in cream base. The pH was evaluated and rheological study. Drug release was evaluated and compared with simple cream- drug, ACV – SLN with compritol 888ATO and marketed cream. The potential of SLN as the carrier for dermal delivery was studied. Results: Particle size analysis of SLNs prove small, smooth, spherical shape particle ranged from 150 to 200 nm for unloaded and from 330 to 444 nm for ACV loaded particles. The EE% for optimal formula is 72% with suitable pH for skin application. Rheological behavior is shear thinning and thixotropic. Release study proved controlled drug release for SLNs especially in formula containing compritol88 ATO. Stability study emphasized an insignificant change in SLNs properties over 6 month. In-vivo study showed significantly higher accumulation of ACV in stratum corneum, dermal layer, and receptor compartment compared with blank skin. Conclusion: AVC-loaded SLNs might be beneficial in controlling drug release, stable and improving dermal delivery of antiviral agent(s).


2015 ◽  
Vol 12 (4) ◽  
pp. 292-301 ◽  
Author(s):  
Surender Singh Jadav ◽  
Barij Nayan Sinha ◽  
Boris Pastorino ◽  
Xavier de Lamballerie ◽  
Rolf Hilgenfeld ◽  
...  

1998 ◽  
Vol 11 (4) ◽  
pp. 614-627 ◽  
Author(s):  
A. K. Patick ◽  
K. E. Potts

SUMMARY Currently, there are a number of approved antiviral agents for use in the treatment of viral infections. However, many instances exist in which the use of a second antiviral agent would be beneficial because it would allow the option of either an alternative or a combination therapeutic approach. Accordingly, virus-encoded proteases have emerged as new targets for antiviral intervention. Molecular studies have indicated that viral proteases play a critical role in the life cycle of many viruses by effecting the cleavage of high-molecular-weight viral polyprotein precursors to yield functional products or by catalyzing the processing of the structural proteins necessary for assembly and morphogenesis of virus particles. This review summarizes some of the important general features of virus-encoded proteases and highlights new advances and/or specific challenges that are associated with the research and development of viral protease inhibitors. Specifically, the viral proteases encoded by the herpesvirus, retrovirus, hepatitis C virus, and human rhinovirus families are discussed.


2021 ◽  
pp. 107815522110313
Author(s):  
Emre Demir ◽  
Osman Sütcüoğlu ◽  
Beril Demir ◽  
Oktay Ünsal ◽  
Ozan Yazıcı

Introduction Favipiravir is an antiviral agent that is recently used for SARS-CoV2 infection. The drug-drug interactions of favipiravir especially with chemotherapeutic agents in a patient with malignancy are not well known. Case report The patient diagnosed with metastatic osteosarcoma was given high dose methotrexate treatment, and favipiravir was started on the third day of the treatment with suspicion of SARS-CoV2 infection. Grade 3 hepatotoxicity developed after favipiravir. Management & outcome: The acute viral hepatitis panel and autoimmune liver disease panel were negative. The ultrasound of the abdomen was unremarkable for any hepatobiliary pathology. The all viral and hepatobiliary possible etiological factors were ruled out. The patient’s liver enzymes increased just after (12 hours later) the initiation of favipiravir, and we diagnosed toxic hepatitis caused by favipiravir-methotrexate interaction. Therefore, methylprednisolone 1 mg/kg dose was started for a presumed diagnosis of toxic hepatitis. Hepatotoxicity completely regressed after favipiravir was discontinued. Discussion Favipiravir may inhibit methotrexate elimination by inhibiting aldehyde oxidase and its sequential use may cause hepatotoxicity in this case. The clinicians should keep in mind possible drug interactions while using new antiviral agents against SARS-CoV2 like favipiravir.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Liping Sun ◽  
Xueqi Zhang ◽  
Shufa Xu ◽  
Chunsheng Hou ◽  
Jin Xu ◽  
...  

Abstract Background Sacbrood is an infectious disease of the honey bee caused by Scbrood virus (SBV) which belongs to the family Iflaviridae and is especially lethal for Asian honeybee Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV. Currently, there is a lack of an effective antiviral agent for controlling CSBV infection in honey bees. Methods Here, we explored the antiviral effect of a Chinese medicinal herb Radix isatidis on CSBV infection in A. cerana by inoculating the 3rd instar larvae with purified CSBV and treating the infected bee larvae with R. isatidis extract at the same time. The growth, development, and survival of larvae between the control and treatment groups were compared. The CSBV copy number at the 4th instar, 5th instar, and 6th instar larvae was measured by the absolute quantification PCR method. Results Bioassays revealed that R. isatidis extract significantly inhibited the replication of CSBV, mitigated the impacts of CSBV on larval growth and development, reduced the mortality of CSBV-infected A. cerana larvae, and modulated the expression of immune transcripts in infected bees. Conclusion Although the mechanism underlying the inhibition of CSBV replication by the medicine plant will require further investigation, this study demonstrated the antiviral activity of R. isatidis extract and provides a potential strategy for controlling SBV infection in honey bees.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 448
Author(s):  
Sineewanlaya Wichit ◽  
Nuttamonpat Gumpangseth ◽  
Rodolphe Hamel ◽  
Sakda Yainoy ◽  
Siwaret Arikit ◽  
...  

Chikungunya and Zika viruses, both transmitted by mosquito vectors, have globally re-emerged over for the last 60 years and resulted in crucial social and economic concerns. Presently, there is no specific antiviral agent or vaccine against these debilitating viruses. Understanding viral–host interactions is needed to develop targeted therapeutics. However, there is presently limited information in this area. In this review, we start with the updated virology and replication cycle of each virus. Transmission by similar mosquito vectors, frequent co-circulation, and occurrence of co-infection are summarized. Finally, the targeted host proteins/factors used by the viruses are discussed. There is an urgent need to better understand the virus–host interactions that will facilitate antiviral drug development and thus reduce the global burden of infections caused by arboviruses.


Sign in / Sign up

Export Citation Format

Share Document