scholarly journals Evaluation of Diversity among Soybean Genotypes via Yield Attributing Traits and SSR Molecular Markers

Author(s):  
Nishi Mishra ◽  
Manoj Kumar Tripathi ◽  
Sushma Tiwari ◽  
Niraj Tripathi ◽  
Neha Gupta ◽  
...  

Introduction: As an important source of nutrients to humans and animals, soybean is considered to be a major crop. Objective: The present study has been executed to identify diverse soybean genotypes on account of different morpho-physiological and microsatellite molecular markers. Study Design: Data for Morpho-physiological traits were recorded from experiment conducted under field conditions in RBD design whereas molecular work was conducted in Laboratory. Place and Duration of the Study: The present study was conducted at College of Agriculture, Gwalior, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, M.P., India during Kharif 2018-19. Methodology: The study was conducted to document different morphological and physiological traits related to the yield and its attributing traits in soybean. Total 32 microsatellite markers were also used in laboratory to analyze the variability among soybean genotypes. Results: Morpho-physiological analysis among 53 genotypes revealed the presence of considerable level of variability. Phylogenetic tree based on morpho-physiological traits grouped the genotypes into major and minor cluster. Major cluster had fifty genotypes while minor cluster had only three genotypes. Among polymorphic 32 microsatellite markers, the highest genetic diversity (0.66) was recorded in Satt520 whilst lowest (0.037) was in Satt557 with an average of 0.35. The highest PIC value was 0.59 prearranged by Satt520 and lowest 0.036 by Satt557. An average major allele frequency was 0.69 while, an average PIC value was 0.32. Microsatellite markers-based data also grouped the genotypes into one major and one minor cluster. Conclusion: Molecular analysis based on microsatellite markers confirms the presence of genetic variability among genotypes under the investigation. Data obtained in the present investigation may contribute towards improvement of soybean genotypes to develop high yielding varieties by considering diverse genotypes with good agronomical traits in hybridization programme.

Author(s):  
M. L. Choudhary ◽  
M. K. Tripathi ◽  
Sushma Tiwari ◽  
R. K. Pandya ◽  
Neha Gupta ◽  
...  

Aim: The present study was undertaken to analyze genetic diversity among pearl millet genotypes based on drought linked morpho-physiological and microsatellite markers. Study Design: In the present investigation, 96 pearl millet germplasm lines were screened against drought using different morphological and physiological traits along with SSR markers. Place and Duration of the Study: The present study was conducted at College of Agriculture, Gwalior, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, M.P., India during July 2019 to December, 2020. Methodology: The study was conducted to record different morphological and physiological traits related to drought tolerance and susceptibility. Thirty five microsatellite markers were also used in laboratory to analyze the variability among pearl millet genotypes under study. Results: Pearl millet genotypes were grouped according to their morpho-physiological characteristics. Among 35 SSR markers, twenty-two were successfully amplified across all germplasm lines and seven SSR markers were found to be polymorphic and fifteen markers were monomorphic. All seven polymorphic SSR markers were used consequently for amplification of all the 96 germplasm lines. The range of PIC value was 0.0939 to 0.2980 with the average of 0.2274. The highest PIC value was recorded for the markers Xibmsp26 and Xibmsp29 (0.2980), followed by Xibmsp03 (0.2392), Xibmsp29 (0.2392), Xibmsp06 (0.2289) and Xibmsp07 (0.1948) while the lowest for the marker Xibmsp01 (0.0939). The range of major allele frequency value was 0.7604 to 0.9479 with the average of 0.8363. The range of genetic diversity value was 0.0987 to 0.3644 with the average of 0.2665. Conclusions: According to the morpho-physiological data a total of 22 pearl millet genotypes were found to be grouped distantly from rest of the genotypes. These genotypes had shown their drought tolerance bahaviour however, rests of the genotypes were found to be susceptible against drought.


Agricultura ◽  
2016 ◽  
Vol 13 (1-2) ◽  
pp. 57-64 ◽  
Author(s):  
Metka Šiško

Abstract The main goal of the Slovene Plant Gene Bank is preservation, maintenance and evaluation of traditional cultivars and other useful genotypes. The Faculty of Agriculture and Life Sciences houses among other plant materials also numerous accessions of plums (Prunus domestica L.). Duplicates among 15 accessions were studied using six microsatellite primer pairs. These microsatellite markers revealed an average of 7.67 alleles per locus, and a range of 4 to 10 different alleles per locus. The genetic distances between studied accessions were calculated using the Dice coefficient to form a dendrogram. The six SSRs were found to be adequate for differentiating among genotypes within the collection. Among the analysed accessions no duplicates were found.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1907
Author(s):  
Shambhavi Yadav ◽  
Joana Carvalho ◽  
Isabel Trujillo ◽  
Marta Prado

The olive fruit, a symbol of Mediterranean diets, is a rich source of antioxidants and oleic acid (55–83%). Olive genetic resources, including cultivated olives (cultivars), wild olives as well as related subspecies, are distributed widely across the Mediterranean region and other countries. Certain cultivars have a high commercial demand and economical value due to the differentiating organoleptic characteristics. This might result in economically motivated fraudulent practices and adulteration. Hence, tools to ensure the authenticity of constituent olive cultivars are crucial, and this can be achieved accurately through DNA-based methods. The present review outlines the applications of microsatellite markers, one of the most extensively used types of molecular markers in olive species, particularly referring to the use of these DNA-based markers in cataloging the vast olive germplasm, leading to identification and authentication of the cultivars. Emphasis has been given on the need to adopt a uniform platform where global molecular information pertaining to the details of available markers, cultivar-specific genotyping profiles (their synonyms or homonyms) and the comparative profiles of oil and reference leaf samples is accessible to researchers. The challenges of working with microsatellite markers and efforts underway, mainly advancements in genotyping methods which can be effectively incorporated in olive oil varietal testing, are also provided. Such efforts will pave the way for the development of more robust microsatellite marker-based olive agri-food authentication platforms.


2019 ◽  
Vol 29 (2) ◽  
pp. 267-276
Author(s):  
Ripa Rani Bhowal ◽  
M. Mofazzal Hossain ◽  
Emrul Kayesh ◽  
Mehfuz Hasan

The experiment was conducted to assess five tropical strawberry genotypes at phenotypic and molecular level. Among the five strawberry genotypes (BARI Strawberry 1, BARI Strawberry 2, BARI Strawberry 3, FA 005 and Festival), BARI Strawberry 2 was found to be the best in respect of fruit per plant (32.42), fruit yield per plant (594.73 gm) and yield per hectare (19.39 ton). Ten SSR primers were initially screened for molecular characterization and finally MFv104, ARSFL-10 and ARSFL-15 markers were selected for the analysis. EMFv104 and ARSFL-15 produced the maximum number of polymorphic alleles (4) while ARSFL-10 produced three polymorphic alleles. The major allele frequency at each locus ranged from 0.4 (EMFv104) to 0.6 (ARSFL-10). The PIC values varied from 0.4992 on ARSFL-10 to 0.672 on EMFv104. The gene diversity ranged from 0.56 (ARSFL-10) to 0.72 (EMFv104 and ARSFL-15). BARI Strawberry 1 and Festival were the closest genotypes with the lowest genetic dissimilarity value of 0.16667. EMFv104 and ARSFL-15 can be used as polymorphic markers for assessing genetic diversity of different strawberry genotypes.


2019 ◽  
Vol 17 (04) ◽  
pp. 371-374
Author(s):  
Shuangcheng Wu ◽  
Hang Ye ◽  
Yuansong Chen ◽  
Jiemei Deng ◽  
Jiexia Su ◽  
...  

AbstractCamellia oleifera is an important woody plant producing healthy edible oils. People need a large number of molecular markers, especially microsatellite, in breeding of C. oleifera. In this study, we sequenced the root transcriptomes of C. oleifera, and then designed a novel set of microsatellite markers based on the root-expressed genes. We assembled a total of 57,121 unigenes with a length of 42.63 Mb, which harboured 15,902 microsatellites. Among these microsatellites, di-nucleotide repeat motifs were the most abundant group (56.45%), then followed by tri- (25.20%), mono- (12.12%), hexa- (3.21%), penta- (2.18%) and quad-nucleotide ones (0.84%). In total, 6738 primer pairs were designed successfully to amplify the microsatellite loci. To test these microsatellite markers, 48 primer pairs were randomly selected and synthesized and validated in C. oleifera and its eight relatives. Up to 75% of the primer pairs amplified in C. oleifera and its relatives, and 62.5% displayed polymorphism. The transferability and diverse alleles across its eight relatives were detected for each polymorphic primer pair. The novel set of microsatellites derived from the root transcriptomes here provided a useful resource for future molecular genetics improvement of C. oleifera and its relatives.


Parasitology ◽  
2002 ◽  
Vol 125 (7) ◽  
pp. S51-S59 ◽  
Author(s):  
J. CURTIS ◽  
R. E. SORENSEN ◽  
D. J. MINCHELLA

Blood flukes in the genus Schistosoma are important human parasites in tropical regions. A substantial amount of genetic diversity has been described in populations of these parasites using molecular markers. We first consider the extent of genetic variation found in Schistosoma mansoni and some factors that may be contributing to this variation. Recently, though, attempts have been made to analyze not only the genetic diversity but how that diversity is partitioned within natural populations of schistosomes. Studies with non-allelic molecular markers (e.g. RAPDs and mtVNTRs) have indicated that schistosome populations exhibit varying levels of gene flow among component subpopulations. The recent characterization of microsatellite markers for S. mansoni provided an opportunity to study schistosome population structure within a population of schistosomes from a single Brazilian village using allelic markers. Whereas the detection of population structure depends strongly on the type of analysis with a mitochondrial marker, analyses with a set of seven microsatellite loci consistently revealed moderate genetic differentiation when village boroughs were used to define parasite subpopulations and greater subdivision when human hosts defined subpopulations. Finally, we discuss the implications that such strong population structure might have on schistosome epidemiology.


2016 ◽  
Vol 15 (6) ◽  
pp. 539-547 ◽  
Author(s):  
P. Sharma ◽  
S. Sareen ◽  
M. Saini ◽  
Shefali

AbstractHeat stress greatly limits the productivity of wheat in many regions. Knowledge on the degree of genetic diversity of wheat varieties along with their selective traits will facilitate the development of high yielding, stress-tolerant wheat cultivar. The objective of this study were to determine genetic variation in morpho-physiological traits associated with heat tolerance in 30 diverse wheat genotypes and to examine genetic diversity and relationship among the genotypes varying heat tolerance using molecular markers. Phenotypic data of 15 traits were evaluated for heat tolerance under non-stress and stress conditions for two consecutive years. A positive and significant correlation among cell membrane stability, canopy temperature depression, biomass, susceptibility index and grain yield was shown. Genetic diversity assessed by 41 polymorphic simple sequence repeat (SSR) markers was compared with diversity evaluated for 15 phenotypic traits averaged over stress and non-stress field conditions. The mean polymorphic information content for SSR value was 0.38 with range of 0.12–0.75. Based on morpho-physiological traits and genotypic data, three groups were obtained based on their tolerance (HHT, MHT and LHT) levels. Analysis of molecular variance explained 91.7% of the total variation could be due to variance within the heat tolerance genotypes. Genetic diversity among HHT was higher than LHT genotypes and HHT genotypes were distributed among all cluster implied that genetic basis of heat tolerance in these genotypes was different thereby enabling the wheat breeders to combine these diverse sources of genetic variation to improve heat tolerance in wheat breeding programme.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jing Zhang ◽  
Hui Li ◽  
Yiwei Jiang ◽  
Huibin Li ◽  
Zhipeng Zhang ◽  
...  

Abstract Background Identification of genetic diversity in heat tolerance and associated traits is of great importance for improving heat tolerance in cool-season grass species. The objectives of this study were to determine genetic variations in heat tolerance associated with phenotypic and physiological traits and to identify molecular markers associated with heat tolerance in a diverse collection of perennial ryegrass (Lolium perenne L.). Results Plants of 98 accessions were subjected to heat stress (35/30 °C, day/night) or optimal growth temperature (25/20 °C) for 24 d in growth chambers. Overall heat tolerance of those accessions was ranked by principal component analysis (PCA) based on eight phenotypic and physiological traits. Among these traits, electrolyte leakage (EL), chlorophyll content (Chl), relative water content (RWC) had high correlation coefficients (− 0.858, 0.769, and 0.764, respectively) with the PCA ranking of heat tolerance. We also found expression levels of four Chl catabolic genes (CCGs), including LpNYC1, LpNOL, LpSGR, and LpPPH, were significant higher in heat sensitive ryegrass accessions then heat tolerant ones under heat stress. Furthermore, 66 pairs of simple sequence repeat (SSR) markers were used to perform association analysis based on the PCA result. The population structure of ryegrass can be grouped into three clusters, and accessions in cluster C were relatively more heat tolerant than those in cluster A and B. SSR markers significantly associated with above-mentioned traits were identified (R2 > 0.05, p < 0.01)., including two pairs of markers located on chromosome 4 in association with Chl content and another four pairs of markers in association with EL. Conclusion The result not only identified useful physiological parameters, including EL, Chl content, and RWC, and their associated SSR markers for heat-tolerance breeding of perennial ryegrass, but also highlighted the involvement of Chl catabolism in ryegrass heat tolerance. Such knowledge is of significance for heat-tolerance breeding and heat tolerance mechanisms in perennial ryegrass as well as in other cool-season grass species.


Biologia ◽  
2020 ◽  
Vol 75 (5) ◽  
pp. 669-679
Author(s):  
Shamsun Nahar ◽  
Lipika Lahkar ◽  
Md Aminul Islam ◽  
Debanjali Saikia ◽  
Zina Moni Shandilya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document