scholarly journals Investigation of some Properties of Bio-coal Briquettes Produced using Beniseed (Sesame seed) Stalks as Biomass

Author(s):  
Harry Iorwuese Guusu ◽  
Alex Okibe Edeoja ◽  
Jacob Sunday Ibrahim

This study evaluated the properties of bio-coal briquettes made by blending coal with beniseed (sesame seed) stalks in order to determine the optimum composition. The briquettes were produced using a hydraulic compression machine at 5, 10 and 15 bar applied to coal:biomass compositions of 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100% by weight of mixture and particle sizes of 212, 300 and 600 µm. The physical, ultimate and proximate properties of the briquettes were then measured and analyzed. The results indicated that the optimum composition for producing the briquettes lies between 60:40% and 40:60%. These ranges of composition of briquettes had the lowest ignition time of 57.6s, highest percentage volatile matter of 42.7% and low percentage sulphur content of 0.38%. Furthermore, the 40:60% briquettes had the highest mean calorific value of 26.67 MJ/kg. These indicate good potentials for briquettes using coal and beniseed stalks as an alternative energy source while contributing to a friendly environment and wealth generation.

2019 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ida Febriana ◽  
Zurohaina Zurohaina ◽  
Sahrul Effendy

Charcoal briquettes are smokeless fuels which are a type of solid fuel whose fly substance is made low enough so that the smoke generated on its utilization will not interfere with health. In this study charcoal briquettes were made from bintaro shell waste and betung bamboo using tapioca flour adhesives. This study aims to obtain the best quality sub-bituminous coal briquettes and coal briquettes. In this study the carbonization temperature used was 400ᵒC and the composition of raw materials for bintaro shells and betung bamboo was 50:50, the composition of raw materials for sub-bituminous coal and straw 90:10. The method used in this research is experiment or experimental method, with fuel value collection using ASTM D5865-03 standard. The results obtained from this study are for charcoal briquettes with 4000C carbonization temperature Inherent Moisture value of 1.91%, ash 2.29%, volatile matter 23.79%, fixed carbon 72.01% and calorific value 5878.7 kal / gr, and for coal briquettes obtained value Inherent Moisture 0.52%, ash 4.42%, volatile matter 17.98%, fixed carbon 77.08% and calorific value 7152.6 kal / gr. The fuel value of coal briquettes is greater than that of charcoal briquettes, but the combustion value of charcoal briquettes includes a good calorific value as an alternative energy source, and is in accordance with the SNI standard of 5000 kal / gr, even close to the Japanese standard 6000 cal / gr. Keywords: Bintaro, briquette, calorific value


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Abdul Ghofur ◽  
Aqli Mursadin

Berdasarkan ketersediaan sumber daya gambut yang besar di Provinsi Kalimantan Selatan, maka peluang untuk memanfaatkan potensi tanah gambut sebagai sumber energi alternatif sangat besar. Sumber energi yang didapat dari minyak, gas bumi, dan batubara sedikit demi sedikit berkurang, sehingga perlu dicarikan sumber energi alternatif. Peneliti Lahan Gambut dari Balai Penelitian Tanaman Rawa Pertanian (Balittra) Banjarbaru, Dr Muhammad Noor dalam berita Banjarmasin post tanggal 24 Nopember 2005 tentang “PLN Melirik Lahan Gambut”  menjelaskan, dalam gambut memang terdapat energi yang dapat membangkitkan tenaga listrik, energi yang terdapat dalam gambut cukup tinggi yakni sekitar 5.000 kilo kalori per kilogram. Di Kalsel, keberadaannya setara dengan 65 miliar barel minyak bumi atau sebesar 10 juta barel per tahun energi yang dihasilkan.  Berdasarkan latar belakang tersebut beberapa perumusan masalah  dalam penelitian ini adalah bagaimana usaha untuk melakukan tanah gambut untuk menjadi sumber energi alternatif  yang berkualitas dan  mudah digunakan,  bagimana karateristik tanah gambut sebagai sumber energi alternatif. Salah  satu  cara  untuk mengoptimalkan potensi gambut adalah memanfaatkannya sebagai bahan baku dalam pembuatan briket yang dapat dijadikan sebagai bahan bakar altematif  .  Tujuan dari penelitian ini adalah a) memanfaatkan ketersediaan sumber daya alam dengan menggunakan tanah gambut sebagai energi alternatif  dan b ) mengetahui Nilai kalori, berat jenis, kadar air dan kadar abu di wilayah studi. Tanah gambut yang digunakan sebagai  bahan baku untuk energi alternatif  berasal  dari Desa Gambut Kabupaten Banjar.  Prosedur pelaksanaan penelitian dilakukan terhadap karateristik tanah  gambut diwilayah studi  sebagai sumber energi. Dari hasil penelitian ini menunjukan bahwa untuk tanah gambut di Desa Gambut Kec. Gambut bisa   untuk digunakan sebagai bahan bakar alternatif dengan  teknologi pembriketan. Dengan nilai Kadar Air  0,10%, Kadar Abu 72,65%, berat jenis 2,11 Gs dengan nilai kalori 579,2 cal/g bisa digunakan sebagai bahan  bakar alternatif. Key word : energi alternatif, nilai kalori, tanah gambut. Based on the availability of large peat resources in the province of South Kalimantan, the opportunity to utilize the potential of peat soil as an alternative energy source is very large. Energy sources derived from oil, natural gas, and coal gradually diminish, so alternative energy sources are needed. Peatland Researchers from the Agricultural Swamp Research Institute (Balittra) Banjarbaru, Dr. Muhammad Noor in the Banjarmasin post on November 24, 2005 on "PLN Looking at Peatlands" explained that in peat there is indeed energy that can generate electricity, energy contained in peat quite high at around 5,000 kilos of calories per kilogram. In South Kalimantan, its existence is equivalent to 65 billion barrels of oil or 10 million barrels per year of energy produced. Based on this background, several formulations of the problem in this study are how to make peat soils to be a quality alternative energy source that is easy to use, how the characteristics of peat soil as an alternative energy source. One way to optimize the potential of peat is to use it as a raw material in making briquettes that can be used as alternative fuels. The purpose of this study is a) utilizing the availability of natural resources by using peat soil as alternative energy and b) knowing the calorific value, specific gravity, moisture content and ash content in the study area. Peat soil used as raw material for alternative energy comes from the Gambut Village of Banjar Regency. The procedure for conducting research was carried out on the characteristics of peat soil in the study area as an energy source. From the results of this study indicate that for peat soil in the village of Gambut Kec. Peat can be used as an alternative fuel with briquette technology. With a value of 0.10% moisture content, ash content 72.65%, specific gravity of 2.11 Gs with a calorific value of 579.2 cal / g can be used as an alternative fuel. Key word: alternative energy, calorific value, peat soil.


2019 ◽  
Vol 125 ◽  
pp. 13004
Author(s):  
Amanda Anatasya ◽  
Ngurah Ayu Ketut Umiati ◽  
Agus Subagio

Biomass briquettes have been made as an alternative energy source from cow dung waste. Molasses and starch were used as binder material with a carbonization temperature of 400 °C for 2 hours. The work aims to produce biomass briquettes with the best heating value based on analysis of composition effect and type of binder on the briquette with calorific value. The heat test results showed that briquettes with 10% sugar cane binding content produced the highest calorific value of 3907.5 calories/gram. Sugar cane drops become the better binder than starch in biomass briquettes production.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Assefa Tesfaye ◽  
Fentahun Workie ◽  
Venkatesh S. Kumar

Biomass energy accounts for more than 92 percent of overall energy consumption in Ethiopia. As a result, Ethiopia is one of the world’s most biomass-dependent countries. The high reliance on wood fuels and agricultural residues for fuel harms society’s social, economic, and environmental well-being. This study aims to create and test the quality of fuel briquettes made from the coffee husk. Also built and produced are a carboniser/charcoal kiln, a manually operated molder system, and a briquette stove for burning the manufactured briquette. The carboniser converts 15 kg of raw coffee husk into 6 kg of carbonised char in 25 minutes, and the manually operated briquette molder can press 30 kg per hour. The efficiency of converting raw coffee husk into carbonised char content was 40.12%. In the geological survey of Ethiopia, the geochemical laboratory directorate received triplicate samples of the fuel briquette charcoal for analysis. Moisture content, fixed carbon content, ash content, sulfur content, and calorific value were determined using a bomb calorimeter and a ceramic lining furnace. Physical properties of fuel briquettes ranged from 10.03% moisture content, 970 kg/m3 density, 81% fixed carbon, 5.15% ash content, 0% sulfur, and 30.54 Kcal/kg higher heating value, according to laboratory results. The results of the study revealed that the coffee husk fuel briquettes produced have more positive characteristics. Fuel briquettes were cost-effective and environmentally friendly and reduced deforestation compared to firewood. This study clearly shows that briquettes made from coffee husk could be used as an alternative energy source when this kind of waste is well managed.


PERENNIAL ◽  
2007 ◽  
Vol 3 (2) ◽  
pp. 55
Author(s):  
M. Natsir Usman

The development of an alternative energy is now becoming important due to the decrease of natural energy source, The current research was conducted to observe the quality of making charcoal briquette from cocoa pod shell with the particle size of 30 mesh, 50 mesh, 70 mesh and 7 % starch as adhesive. The result showed that charcoal particle size of 70 mesh gave the best charcoal briquette quality having characteristics: moisture 10.67 %, density of 1.15 g/cm3, 18.98% ash content, 49.93 % fixed carbon, 24.99% volatile matter and the calorific value of 4372.54 cal/g. Charcoal briquette from cocoa pod shell was utilized as alternative energy. Key words: Cocoa pod shell, charcoal briquette, starch as adhesive. References


2018 ◽  
Vol 4 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Olena Savchenko ◽  
◽  
Vasyl Zhelykh ◽  
Yurii Yurkevych ◽  
Khrystyna Kozak ◽  
...  

Author(s):  
Dyah Marganingrum ◽  
Lenny Marilyn Estiaty

Aim: This paper aims to explain the added value increasing method of reject coal which has not utilized by the company. Methodology and Results: The method to increase added value in this study used the agglomeration process of briquettes form that changing composition by adding biomass. The biomass functions to minimize bottom ash produced from burning briquettes so that the briquettes burn entirely. Stages processes in this study consist of characterization, briquetting, physical test, and chemical test. Based on the analysis, reject coal still has a high calorific value of 5,929 cal/gr. Shapes and sizes that were not following needs of coal market or consumer due to reject coal to be a waste. Briquettes have been successfully produced and meet specification requirements based on applicable regulations in Indonesia. Besides physical properties, the briquette meet density requirements which are greater than or equal to 1 gr/cm3 and shatter index value is less than 0.5%. The gas emission test shows below threshold, which is CO 0-30 ppm, H2S 0-3.6 ppm, and NOx is not detected. After evaluation, it showed that by adding 30% biomass, ignition time could be decreased and remaining unburned briquettes or bottom ash was reduced as much as 68.68%. Conclusion, significance and impact study: The bio-coal briquettes is a strategic solution to environmental problems and alternative energy sources that are environmentally friendly, because CO and H2S emissions are still below the threshold, even for NOx not detected. Making Bio-coal briquettes as a solution to the utilization of reject coal mining waste to be used as an alternative energy source has been successfully carried out.


Sign in / Sign up

Export Citation Format

Share Document