scholarly journals Municipal Solid Waste Analysis: Case Study on Gorakhpur City, Uttar Pradesh, India

Author(s):  
Yeshi Choden ◽  
Shailesh Kumar Gupta ◽  
Najwa Abdalla

City sanitation plans are strategic planning processes for city wise sanitation sector development. Exponential increase in population and rapid economic development led to an increase in generation of municipal solid waste (MSW) which impacts the sanitation of a city. Also, emission of toxic gases from MSW dumpsites are the main threat to the environment and public health. In the present study, data regarding solid waste management has been collected and studied the current scenario of the municipal solid waste system of Gorakhpur city, Uttar Pradesh, India. MSW composition, physical and chemical analysis has been performed and Methane gases (CH4) generated from MSW of the city is quantified using LandGEM 3.02. Waste composition shows that city generates paper (6.33%), organic matter (56.1%), wood (1.36%), textile (3.73%), plastic (1.11%), Rubber (0.56%), glass (1.6%) and inert material (29.17%).  With the same rate of MSW generation, CH4 emission will amount to 6.6X103 Mg/yr, 1.9x104 Mg/yr of CO2  and 4.33x101 Non methanic organic carbon (NMOC) by 2050.  MSW analysis resulted in high moisture content of 35 -40% and organic matter of 56.1%. Based on the physio chemical analysis, suitable waste to energy option that could be adopted are biogas generation and vermi composting from the biodegradable component of MSW. Rest 36% of non-biodegradable part of MSW could be converted to Reduced Derived Fuel (RDF).

2021 ◽  
Vol 22 (1&2) ◽  
pp. 27-33
Author(s):  
Yeshi Choden ◽  
Tashi Tenzin ◽  
Karchung K. ◽  
Karma Norbu ◽  
Sangay Wangmo ◽  
...  

Conversion of Solid waste into energy is the most resourceful process to combat landfill saturation and environmental impression. Bhutan, with an exponential rise in the waste production, Waste to Energy (WTE) conversion is an alternative solution for municipal solid waste management (MSW). The study for MSW composition and its energy potential analysis for Memelakha (Thimphu) and Pekarshing (Phuntsholing) landfills was done to resolve the waste management challenges in the country. The standard number of samples from two dumpsites were used to analyze for the waste characterization (waste composition, proximate analysis, chemical analysis) and high heating value (HHV) of MSW. MSW of two landfills showed that the main elemental constituents were Carbon and Oxygen with 17.26% and 9.97% by mass respectively for Pekarshing and 16.52% (Carbon) and 11.07% (Oxygen) by mass for Memelakha landfill. Based on the physio-chemical analysis of MSW, the average calorific HHV of MSW obtained were 10.028 MJ/kg (26.04% of coal energy) for Pekarshing dumpsite and 9.6 MJ/kg (24.94% of coal energy) for Memelakha. The analysis showed that by the year 2050 Memelakha landfill has the potential to generate the power of 8.85 Megawatt (MW) and 1.44 Megawatt (MW) for Pekarshing. For (WTE) conversion, incineration, pyrolysis, and gasification technologies are found suitable based on the current composition MSW of Bhutan. Furthermore, in terms of energy efficiency and percentage of wastage, the gasification process was the most feasible method for WTE conversion at two locations with a waste volume reduction of 80 to 90 percent at the landfill.


2020 ◽  
Vol 12 (14) ◽  
pp. 5711
Author(s):  
Laith A. Hadidi ◽  
Ahmed Ghaithan ◽  
Awsan Mohammed ◽  
Khalaf Al-Ofi

The need for resilience and an agile waste management system in Saudi Arabia is vital to control safely the rapid growth of its municipal solid waste (MSW) with minimal environment toll. Similarly, the domestic energy production in Saudi Arabia is thriving and putting a tremendous pressure on its huge reserves of fossil oil. Waste to energy (WTE) plants provides a golden opportunity for Saudi Arabia; however, both challenges (MSW mitigation and energy production) are usually looked at in isolation. This paper at first explores the potential of expanding the WTE energy production in the eastern province in Saudi Arabia under two scenarios (complete mass burn with and without recycling). Secondly, this study analyzes the effect of 3Rs (reduce, reuse, recycle) practices implementation in a residential camp (11,000 population) to influence the behavior of the camp’s citizens to reduce their average waste (kg/capita). The results of the 3R-WTE framework show a potential may reach 254 Megawatt (MW) of electricity by year 2030. The 3R system implementation in the camp reduced MSW production from 5,625 tons to 3000 tons of household waste every year, which is considered lower than what the surrounding communities to be produced in the same area.


2019 ◽  
Vol 45 (4) ◽  
pp. 441-449
Author(s):  
Riham A. Mohsen ◽  
Bassim Abbassi ◽  
Animesh Dutta ◽  
David Gordon

More light is being shed continually on the environmental impacts of municipal solid waste due to the increasing amounts of waste generated and the related greenhouse gas emissions. Emissions from MSW account for 20% of Canadian greenhouse gas (GHG) emissions and accordingly, waste legislation in Ontario demands high waste recovery and a moving towards a circular economy. This study evaluates the current municipal solid waste management in the City of Guelph and assesses possible alternative scenarios based on the associated GHG emissions. Waste Reduction Model (WARM) that was developed by the US-EPA has been used to quantify the GHG emissions produced over the entire life cycle of the MSW management scenario. Sensitivity analysis was also conducted to investigate the influence of some scenarios on the overall GHG emissions. It has been found that one ton of landfilled waste generates approximately 0.39 ton of carbon dioxide equivalent (CO2Eq). It was also found that the current solid waste scenario has a saving of 36086 million ton of CO2Eq (MCO2Eq). However, the results showed that the scenario with enhanced waste-to-energy, reduction at source and recycling has resulted in a high avoided emissions (0.74 kg CO2Eq/kg MSW). The anaerobic Digestion scenario caused the lowest avoided emissions of 0.39 kg CO2Eq/kg MSW. The net avoided emissions for reduction at source scenario were found to be the same as that found by the current scenario (0.4 kg CO2Eq/kg MSW). The sensitivity analysis of both reduction at source and recycling rates show a linear inverse proportional relationship with total GHG emissions reduction.


Author(s):  
Yakov Vishnyakov ◽  
Alexander Kanunnikov

The article analyzes the features of municipal solid waste management in Tokyo. Special attention is paid to the analysis of trends in the volume of waste in the city of Tokyo over the past decades, as well as the reasons for the constant decline in these volumes. The article deals with the waste management activities of the Clean Authority of Tokyo, discusses the features of treatment of various types of waste, as well as the arrangement of the Tokyo city waste landfill. It was noted that the capital of Japan succeeded in creating an effective system for the disposal and recycling of municipal solid waste that can ensure the environmental safety of the city, as well as integrate waste into the country’s fuel and energy complex. An important feature of Japanese waste management companies is the desire not only to comply with official environmental standards, but also to adhere to their own standards, even more stringent. Based on an analysis of Japanese experience, the authors put forward proposals for optimizing the sphere of waste management in Russia. In particular, attention is drawn to the need to prevent an environmental catastrophe caused by a careless attitude to waste, improve the quality of life of citizens, prevent social unrest associated with environmental pollution, and also involve waste in the generation of electricity and heat. The authors note that as part of the “trash” reform, it is necessary to increase the environmental awareness of citizens, provide citizens with relevant and complete information about the industry, and create stricter environmental standards for waste to energy plants and other enterprises involved in waste management.


Author(s):  
Alexander E. Helou ◽  
Kim Tran ◽  
Cecile Buncio

Thermal technologies, such as gasification, pyrolysis, waste-to-energy (WTE), and advanced thermal recycling (second generation WTE with the most advanced air emission control system), can be employed to recover energy from municipal solid waste (MSW), reduce the volume of material to be landfilled, and lessen the potential emission of methane. Methane is a potent greenhouse gas and a major component of landfill gas. All operating WTE facilities in the United States have been subjected to strict environmental regulations since the passage of the Clean Air Act Amendments in 1990. As a result, U.S. WTE facilities now meet or exceed stringent local air quality standards, including those imposed by the South Coast Air Quality Management District (SCAQMD) in Southern California. The United States Environmental Protection Agency (EPA) recognizes the important role of WTE in the integrated solid waste management and ranks combustion higher than landfilling in its solid waste management hierarchy. In addition to upstream source reduction and recycling, downstream thermal treatment of the residual MSW (conducted in controlled environment) can effectively recover energy and further reduce waste volume. Despite all the advantages and environmental benefits of thermal technologies, its utilization for treating MSW in California still faces many challenges. These include negative public perceptions, economical disadvantages, local marketability of by-products, and disposal options for residuals. This paper discusses the need to include energy recovery in the integrated MSW management in California and the challenges encountered by many local jurisdictions.


Sign in / Sign up

Export Citation Format

Share Document