scholarly journals Impact of Iron and Aluminum on the Aggregate Stability of Some Latosols in Central and Southern Liberia (West Africa)

Author(s):  
Georges Martial Ndzana ◽  
Louise Marie Bondje Bidjeck ◽  
Primus Azinwi Tamfuh ◽  
Alex Dortie Kolleh ◽  
Damien Henri Odigui Ahanda ◽  
...  

Problem: Latosols of Liberia are marked by intense surface leaching, strong acidity, low soil organic matter (SOM) content, and low nutrients status, caused by low aggregate stability, which are limiting factors to crop production. Aim: to evaluate the effect of soil organic carbon (SOC) different forms of Fe and Al on the aggregate stability of latosols. Methodology: Composite surface (0-20 cm depth) samples of four latosols at different localities in Liberia (Lat1, Phebe; Lat2, Felela; Lat3, Salala; Lat4, Todee) were collected and analyzed for aggregate stability parameters and factors by standard laboratory methods. Results: the studied soils are sandy clayey, very acidic and poor in SOC. The cation exchange capacity (CEC) ranges from 10.28 to 14.80 mmol.kg−1. Dominant forms of Al and Fe are free Fe (Fed) and Al [1], followed by amorphous Fe (Feo) and Al (Alo) and chelated Fe (Fep) and Al (Alp). The highest levels of water dispersible clay (WDC) and clay dispersible index (CDI) in Lat1 and Lat2 implied that these two soils are less stable compared to Lat3 and Lat4. The Fe and Al in all forms seem to contribute to soil aggregate stability. The SOC, although very low, also contributes to soil aggregate stability. SOC correlated positively with WDC, CDI and ASC, indicating the impact of SOC both as an aggregating agent and as a dispersing agent, in contrast to previous studies. Conclusion: The study reveals that Fe, Al and SOC are cementing materials which impact the aggregate stability in Latosols.

SOIL ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 33-46
Author(s):  
Edward J. Jones ◽  
Patrick Filippi ◽  
Rémi Wittig ◽  
Mario Fajardo ◽  
Vanessa Pino ◽  
...  

Abstract. Soil aggregate stability is a useful indicator of soil physical health and can be used to monitor condition through time. A novel method of quantifying soil aggregate stability, based on the relative increase in the footprint area of aggregates as they disintegrate when immersed in water, has been developed and can be performed using a smartphone application – SLAKES. In this study the SLAKES application was used to obtain slaking index (SI) values of topsoil samples (0 to 10 cm) at 158 sites to assess aggregate stability in a mixed agricultural landscape. A large range in SI values of 0 to 7.3 was observed. Soil properties and land use were found to be correlated with observed SI values. Soils with clay content >25 % and cation exchange capacity (CEC) : clay ratio >0.5 had the highest observed SI values. Variation in SI for these soils was driven by organic carbon (OC) content which fit a segmented exponential decay function. An OC threshold of 1.1 % was observed, below which the most extreme SI values were observed. Soils under dryland and irrigated cropping had lower OC content and higher observed SI values compared to soils under perennial cover. These results suggest that farm managers can mitigate the effects of extreme slaking by implementing management practices to increase OC content, such as minimum tillage or cover cropping. A regression-kriging method utilising a Cubist model with a suite of spatial covariates was used to map SI across the study area. Accurate predictions were produced with leave-one-out cross-validation, giving a Lin's concordance correlation coefficient (LCCC) of 0.85 and a root-mean-square error (RMSE) of 1.1. Similar validation metrics were observed in an independent test set of samples consisting of 50 observations (LCCC = 0.82; RMSE = 1.1). The potential impact of implementing management practices that promote soil OC sequestration on SI values in the study area was explored by simulating how a 0.5 and 1.0 % increase in OC would impact SI values at observation points and then mapping this across the study area. Overall, the maps produced in this study have the potential to guide management decisions by identifying areas that currently experience extreme slaking and highlighting areas that are expected to have a significant reduction in slaking by increasing OC content.


2014 ◽  
Vol 955-959 ◽  
pp. 3566-3571 ◽  
Author(s):  
Yong Wang ◽  
Zhuang Xiong ◽  
Wu Xian Yan ◽  
Yue Qun Qiu

The objective of this study was to investigate soil aggregate stability within landscape on hillslopes by intensive tillage. Traditional tillage by consecutive hoeing was performed 5 and 20 times on steeply sloping land of the Sichuan Basin, China, by using the methods of simulated tillage to analyze the impact of long-term tillage on soil aggregates at different slope positions. The dry-sieved method was used to determine distribution of aggregate size in the different landscape positions, and mean weight diameter (MWD) and geometric mean diameter (GMD) as indices of soil aggregate stability. The different times of tillage resulted in different soil aggregate distributions. The results showed that the MWD and GMD values of aggregates were significantly decreased (p< 0.05) after 20-tillage operation, compared with pre-tillage operation. The differences in distributions of MWD and GMD demonstrate that the choice of the tillage times can be an important factor in changing soil aggregate stability and productivity in steeply sloping fields.


2020 ◽  
Author(s):  
Edward J. Jones ◽  
Patrick Filippi ◽  
Rémi Wittig ◽  
Mario Fajardo ◽  
Vanessa Pino ◽  
...  

Abstract. Soil aggregate stability is a useful indicator of soil physical health and can be used to monitor condition through time. A novel method to quantify soil aggregate stability, based on the relative increase in the footprint area of aggregates as they disintegrate when immersed in water, has been developed and can be performed using a smartphone application – SLAKES. In this study the SLAKES application was used to obtain slaking index (SI) values of topsoil samples (0 to 10 cm) at 158 sites to assess aggregate stability in a mixed agricultural landscape. A large range in SI values of 0 to 7.3 was observed. Soil properties and land use were found to be correlated with observed SI values. Soils with clay content > 25 % and CEC : clay ratio > 0.5 had the highest observed SI values. Variation in SI for these soils was driven by OC content which fit a segmented exponential decay function. An OC threshold of 1.1 % was observed below which the most extreme SI values were observed. Soils under dryland and irrigated cropping had lower OC content and higher observed SI values compared to soils under perennial cover. These results suggest that farm managers can mitigate the effects of extreme slaking by implementing management practices to increase OC content, such as minimum tillage or cover-cropping. A regression-kriging method utilising a Cubist model with a suite of spatial covariates was used to map SI across the study area. Accurate predictions were produced with leave-one-out cross-validation (LOOCV) giving an LCCC of 0.85 and an RMSE of 1.1. Similar validation metrics were observed in an independent test set of samples consisting of 50 observations (LCCC = 0.82; RMSE = 1.1). The potential impact of implementing management practices that promote soil OC sequestration on SI values in the study area was explored by simulating how a 1 % increase in OC would impact SI values at observation points, and then mapping this across the study area. Overall, the maps produced in this study have the potential to guide management decisions by identifying areas that currently experience extreme slaking, and those areas that are expected to have a significant reduction in slaking by increasing OC content.


2016 ◽  
Vol 30 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Katharina M. Keiblinger ◽  
Lisa M. Bauer ◽  
Evi Deltedesco ◽  
Franz Holawe ◽  
Hans Unterfrauner ◽  
...  

Abstract Agricultural intensification, especially enhanced mechanisation of soil management, can lead to the deterioration of soil structure and to compaction. A possible amelioration strategy is the application of (structural) lime. In this study, we tested the effect of two different liming materials, ie limestone (CaCO3) and quicklime (CaO), on soil aggregate stability in a 3-month greenhouse pot experiment with three agricultural soils. The liming materials were applied in the form of pulverised additives at a rate of 2 000 kg ha−1. Our results show a significant and instantaneous increase of stable aggregates after quicklime application whereas no effects were observed for limestone. Quicklime application seems to improve aggregate stability more efficiently in soils with high clay content and cation exchange capacity. In conclusion, quicklime application may be a feasible strategy for rapid improvement of aggregate stability of fine textured agricultural soils.


2021 ◽  
Author(s):  
Fabian Maier ◽  
Ilja van Meerveld

&lt;p&gt;Overland flow (OF) and subsurface flow (SSF) are key processes that determine the streamflow response to precipitation, as well as water quality, but are affected by the land surface and soil characteristics. They can also modify the shape of our landscape. However, our understanding of the evolution of OF and SSF characteristics and the feedback mechanisms between hydrological, pedological, biological and geormorphological processes that affect OF and SSF during landscape evolution is still limited.&lt;/p&gt;&lt;p&gt;We used a space-for-time approach and studied 3 plots (4m x 6m each) on four different aged moraines (several decades to ~13.500 years) on the Sustenpass near the Steinglacier and in the karstic glacier foreland of the Griessfirn near Klausenpass (total of 24 plots) to determine how OF &amp; SSF change during landscape evolution. We used artificial rainfall experiments with high rainfall intensities to determine runoff ratios, peak flow rates, timing and duration of OF &amp; SSF. The addition of tracers (&lt;sup&gt;2&lt;/sup&gt;H and NaCl) to the sprinkling water and sampling of soil water allowed us to determine the degree of mixing of the applied rainfall with water in the soil. Measurements during natural rainfall events helped to determine the impact of the rainfall volume and intensity on the runoff generation. In addition, the runoff samples and sensor-based turbidity measurements of OF provide an estimate of the erosion rates during extreme events. In order to link the differences in runoff generation with the pedological and biological characteristics of the slopes, vegetation cover, root density, soil texture, soil aggregate stability, and the saturated hydraulic conductivity (K&lt;sub&gt;sat&lt;/sub&gt;) were measured as well.&lt;/p&gt;&lt;p&gt;The results show that K&lt;sub&gt;sat&lt;/sub&gt; at both study areas decreases with moraine age and soil depth and is mainly driven by the increase in silt and clay content. Despite the high K&lt;sub&gt;sat&lt;/sub&gt; values, local OF occurs frequently on the youngest moraines due to the large rock and stone cover. Sediment flux and the related erosion rates are largest for the young moraines, since vegetation cover and soil aggregate stability are small. Soil and vegetation development change major OF and SSF characteristics during landscape development, such as the mixing processes and the pre-event water fraction in OF &amp; SSF, which both increase for the older moraines. However, the rate of these changes during landscape evolution is controlled by the parent material. These results can be used to inform landscape evolution models and help us to understand processes within the critical zone during the first millennia of soil development.&lt;/p&gt;


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xinxin He ◽  
Yongzhen Huang ◽  
Qianchun Zhang ◽  
Shaoming Ye ◽  
Shengqiang Wang

Abstract Background Revealing the variations in soil aggregate-related organic carbon (OC) and labile organic carbon (LOC) fractions in a chronosequence of Chinese fir plantations plays an important role in better understanding the impact of soil carbon sink or source on the Chinese fir plantation ecosystem. In this study, soil samples in a depth of 0–20 cm were collected from Chinese fir plantations at different stand ages (0, 9, 17, and 26 years old) in Guangxi, China. With the optimal moisture sieving method adopted, the soil aggregates of 4 different sizes were obtained, including > 2-mm, 2–1-mm, 1–0.25-mm, and < 0.25-mm aggregates. Soil OC and LOC fractions were measured in the aggregates of different sizes. The LOC fractions included readily oxidizable carbon (ROC), particulate organic carbon (POC), microbial biomass carbon (MBC), water-soluble organic carbon (WOC), and mineralized organic carbon (MOC). Results Soil aggregate stability, as indicated by the mean weight diameter (MWD), was the highest in the 17-year-old Chinese fir plantations and was significantly positively related (p < 0.05) to the concentrations of OC and LOC fractions (except for the ROC and MOC), with the POC in particular. As for all stand ages of Chinese fir plantations, the concentrations of soil OC and LOC fractions were significantly increased as the aggregate size decreased. Consequently, there were more OC and LOC fractions distributed in the < 0.25-mm aggregates. During the stand development, the concentrations of soil OC and LOC fractions first increased and then decreased, with the highest levels detected in the 17-year-old Chinese fir plantations, indicating that the 17-year-old Chinese fir plantations were conducive to the accumulation of soil OC and LOC fractions. Conclusion After 17 years of planting, promoted soil carbon (especially for the POC) accumulation contributes significantly to enhancing soil aggregate stability for the Chinese fir plantations in Guangxi, China.


Author(s):  
Surachet Aramrak ◽  
Natthapol Chittamart ◽  
Worachart Wisawapipat ◽  
Wutthida Rattanapichai ◽  
Mutchima Phun-Iam ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dan Li ◽  
Ningning Yin ◽  
Ruiwei Xu ◽  
Liping Wang ◽  
Zhen Zhang ◽  
...  

AbstractWe constructed a mining soil restoration system combining plant, complex substrate and microbe. Sludge was added to reconstructed mine substrates (RMS) to accelerate the reclamation process. The effect of sludge on plant growth, microbial activity, soil aggregate stability, and aggregation-associated soil characteristics was monitored during 10 years of reclamation. Results show that the height and total biomass of ryegrass increases with reclamation time. Sludge amendment increases the aggregate binding agent content and soil aggregate stability. Soil organic carbon (SOC) and light-fraction SOC (LFOC) in the RMS increase by 151% and 247% compared with those of the control, respectively. A similar trend was observed for the glomalin-related soil protein (GRSP). Stable soil aggregate indexes increase until the seventh year. In short, the variables of RMS determined after 3–7 years insignificantly differ from those of the untreated sample in the tenth-year. Furthermore, significant positive correlations between the GRSP and SOC and GRSP and soil structure-related variables were observed in RMS. Biological stimulation of the SOC and GRSP accelerates the recovery of the soil structure and ecosystem function. Consequently, the plant–complex substrate–microbe ecological restoration system can be used as an effective tool in early mining soil reclamation.


2015 ◽  
Vol 63 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Karsten Schacht ◽  
Bernd Marschner

Abstract The use of treated wastewater (TWW) for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW) resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC) and soil aggregate stability (SAS). To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm) were collected for analyzing SAS and determination of selected soil chemical and physical characteristics. The mean HC values decreased at all TWW sites by 42.9% up to 50.8% compared to FW sites. The SAS was 11.3% to 32.4% lower at all TWW sites. Soil electrical conductivity (EC) and exchangeable sodium percentage (ESP) were generally higher at TWW sites. These results indicate the use of TWW for irrigation is a viable, but potentially deleterious option, as it influences soil physical and chemical properties.


Sign in / Sign up

Export Citation Format

Share Document