scholarly journals Measuring and Monitoring the Impact of Precision Land Levelling and Arable Cropping Systems on Aggregate Associated Carbon Fractions and Soil Carbon Stock in Sub-tropical Ecosystems

Author(s):  
R. K. Naresh ◽  
Yogesh Kumar ◽  
S. S. Tomar ◽  
Mukesh Kumar ◽  
M. Sharath Chandra ◽  
...  

The Long term experiment (2009-10 to-2018-19) was conducted to study the effects of precision land levelled (PLL) versus traditional land levelled (TLL) systems on aggregate-associated soil organic carbon (SOC) in a farmers participatory fields under sub-tropical ecosystems (Western Uttar Pradesh) of Indian conditions. The significance of this study mainly focus to determine the suitability of various labile carbon fractions as indicators of soil quality and the stability of aggregates plays a vital role in preserving and long term storing of soil organic carbon by implementing Precision Land Levelling under various arable cropping system. The treatment comprised of sixteen alternative arable cropping systems strategies viz. R-WPLL, R-WTLL, S-WPLL, S-WTLL, R-P-MbPLL, R-P-MbTLL, R-P-OPLL, R-P-OTLL, R-C-OPLL, R-C-OTLL, O-W-MbPLL, O-W-MbTLL, M-W-MbPLL, M-W-MbTLL, M-P-MbPLL, and M-P-MbTLL etc were taken with recommended dose of fertilizers and various observations were recorded. The results indicated that the M-P-MbPLL produced 79.5 kgha-1day-1 productivity and used only 110 cm irrigation water which was 48.1 per cent less than irrigation water used for R-WPLL. The land use efficiency under R-P-MbPLL, R-P-OPLL, R-P-MbPLL, R-C-OPLL and M-P-MbPLL were recorded as 86.2, 85.1, 84.8, 84.6 and 83.9%. However, energy value in terms total input energy and energy productivity were 39.9 and 218.5 GJ ha-1 over existing R-W system (32.9 & 105.7 GJ ha-1). The quantity of water used in the R-C-O, M-W-Mb, M-P-Mb, and O-W-Mb were 46.1, 44.9, 40.1 and 36.3 per cent less than quantity of water used for R-W system. Aggregate-associated SOC contents in 0-15 cm depth were recorded highest SOC at 15-30 cm depth in PLL systems as 9.4% for both M-P-MbPLL and M-W-MbPLL. Highest PON change in arable cropping system (30.9 & 40.1%) was found in O-W-Mb with precision land levelling (T11) plots followed by R-P-O with precision land levelling (T7) plots (26.1 & 35.8%) as compared to R-W and S-W system. The values of LFOC in surface soil were 194.7, 187.9, 176.2, 170.9, 168.5, 150.6, 132.8 and 123.8 mgkg−1 in R-P-O, R-C-O, M-W-Mb, O-W-Mb, M-P-Mb, R-P-Mb, R-W and S-W with precision land levelling treatments. Higher SOC sequestration was observed with precision land leveling along with alternative arable cropping systems with O-W-MbPLL, R-C-OPLL, R-P-OPLL, O-W-MbPLL and M-P-MbPLL respectively. Therefore, PLL systems had greater soil surface aggregation and carbon storage, land levelling did not affect SOC patterns across aggregates, but changed the distribution of aggregate size, reflecting that land levelling mainly influenced soil fertility by altering soil structure.

Soil Research ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 24
Author(s):  
Yui Osanai ◽  
Oliver Knox ◽  
Gunasekhar Nachimuthu ◽  
Brian Wilson

Agricultural practices (e.g. tillage, crop rotation and fertiliser application) have a strong influence on the balance between carbon (C) input and output by altering physicochemical and microbial properties that control decomposition processes in the soil. Recent studies suggest that the mechanisms by which agricultural practice impacts soil organic carbon (SOC) dynamics in the topsoil may not be the same as those in the subsoil. Here, we assessed SOC stock, soil organic fractions and nitrogen availability to 1.0 m in soils under a cotton (Gossypium hirsutum L.)-based cropping system, and assessed the impact of agricultural management (three historical cropping systems with or without maize (Zea mays L.) rotation) on SOC storage. We found that the maize rotation and changes in the particulate organic fraction influenced SOC stock in the topsoil, although the overall change in SOC stock was small. The large increase in subsoil SOC stock (by 31%) was dominated by changes in the mineral-associated organic fraction, which were influenced by historical cropping systems and recent maize rotation directly and indirectly via changes in soil nitrogen availability. The strong direct effect of maize rotation on SOC stock, particularly in the subsoil, suggests that the direct transfer of C into the subsoil SOC pool may dominate C dynamics in this cropping system. Therefore, agricultural management that affects the movement of C within the soil profile (e.g. changes in soil physical properties) could have a significant consequence for subsoil C storage.


2012 ◽  
Vol 48 (4) ◽  
pp. 473-487 ◽  
Author(s):  
P. K. GHOSH ◽  
M. S. VENKATESH ◽  
K. K. HAZRA ◽  
NARENDRA KUMAR

SUMMARYContinuous cultivation of rice–wheat cropping system in the Indo-Gangetic plains is under threat with decline in soil organic carbon (SOC), total factor productivity and overall sustainability. Pulses, an important component of crop diversification, are known to improve soil quality through their unique ability of biological N2 fixation, leaf litter fall and deep root system. Therefore, the effect of inclusion of pulses in the puddled rice system under organic and inorganic amendments on SOC pool and its management indices were evaluated in a long-term experiment after seven cropping cycles. The results indicated that inclusion of pulses in the rice-based system improved the SOC content, being greater in surface soil (0–20 cm) and declining with soil depth. Among the four carbon fractions determined, less labile carbon fraction (Cfrac3) was the dominant fraction in the puddled rice system, particularly under organic treatments, indicating that it is possible to maintain organic carbon for longer time in this system. The rice–wheat–mung bean system resulted in 6% increase in SOC and 85% increase in soil microbial biomass carbon as compared with the conventional rice–wheat system. Application of crop residues, farm yard manure (5 t ha−1) and biofertilisers had greater amount of carbon fractions and carbon management index (CMI) over control and the recommended inorganic (NPKSZnB) treatment in the soil surface, particularly in the system where pulses are included. Interestingly, in the puddled rice system, passive carbon pool is more in surface soil than deeper layers. The relative proportion of active carbon pool in surface layer (0–20 cm) to subsurface layer (20–40 cm) was highest in rice–wheat–rice–chickpea (1.14:1) followed by rice–wheat–mung bean (1.07:1) and lowest in the rice–wheat system (0.69:1). Replacing wheat with chickpea either completely or during alternate year in the conventional rice–wheat system also had positive impact on SOC restoration and CMI. Therefore, inclusion of pulses in the rice-based cropping system and organic nutrient management practices had significant impact on maintaining SOC in an Inceptisol of the Indo-Gangetic plains of India.


2018 ◽  
Vol 98 (3) ◽  
pp. 566-569
Author(s):  
Elwin G. Smith ◽  
H. Henry Janzen ◽  
Benjamin H. Ellert

We planted continuous wheat, with and without nitrogen fertilizer, onto a preceding long-term (44 yr) experiment with contrasting cropping systems, and measured soil organic carbon (SOC) after 6 yr. Changes in SOC were driven mostly by cumulative plant C inputs, as influenced by yield response to added nitrogen.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1964
Author(s):  
Rama Krishna Naresh ◽  
Rajan Bhatt ◽  
M. Sharath Chandra ◽  
Alison M. Laing ◽  
Ahmed Gaber ◽  
...  

A six-year experiment (2009 to 2015) was conducted on sugarcane-based cropping systems in farmers’ fields to examine the effects of precision land leveling (PLL) compared to traditional land leveling (TLL) in terms of soil organic carbon (SOC), greenhouse gas emissions, irrigation water requirements, and system productivity and profitability. Twelve treatments compared different sugarcane sowing regimes and crops in rotation under both PLL and TLL. Spring-sown sugarcane grown in rotation with rice, potato, and wheat under PLL had the highest production (89.7 kg ha−1 day−1) and required 142 cm irrigation water, which was 35.1% less water than a commonly practiced cropping system with late-sown sugarcane grown in rotation with rice and wheat only under TLL). Cropping systems established under PLL had higher land use efficiency (ranging between 64.9 and 86.2%), higher energy productivity (90.7 to 198.6 GJ ha−1), and lower greenhouse gas emissions (5249.33 to 944.19 kg CO2 eq ha−1 yr−1) than those under TLL. As well, treatments under PLL had increased levels of SOC, particularly in the upper soil layers, relative to SOC in treatments under TLL. Combining PLL with diversification of crops in sugarcane cropping systems has the potential to sustainably increase farmers’ land productivity and profitability while improving soil health and reducing irrigation requirements. These benefits are likely to have applications in other sugarcane-based cropping systems in similar agro-ecologies.


CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 63-73 ◽  
Author(s):  
Samuel Bouchoms ◽  
Zhengang Wang ◽  
Veerle Vanacker ◽  
Sebastian Doetterl ◽  
Kristof Van Oost

2018 ◽  
Vol 64 (No. 11) ◽  
pp. 557-563 ◽  
Author(s):  
Yunfa Qiao ◽  
Shujie Miao ◽  
Yingxue Li ◽  
Xin Zhong

Monoculture is common to meet commodity grain requirements in Northeast China. The effect of long-term monoculture on chemical composition of soil organic carbon (SOC) remains unclear. This study was done to evaluate how changes in chemical compositions of SOC responded to long-term monoculture. To achieve this objective, the chemical compositions of SOC in maize-soybean rotation, continuous soybean and continuous maize were characterized with the nuclear magnetic resonance technique. Two main components, O-alkyl and aromatic C, showed a wider range of relative proportion in monoculture than rotation system across soil profiles, but no difference was observed between two monoculture systems. Pearson’s analysis showed a significant relationship between plant-C and OCH<sub>3</sub>/NCH, alkyl C or alkyl O-C-O, and the A/O-A was closely related to plant-C. The findings indicated a greater influence of monoculture on the chemical composition of SOC compared to rotation, but lower response to crop species.


2008 ◽  
Vol 100 (6) ◽  
pp. 1787-1787 ◽  
Author(s):  
Ademir Calegari ◽  
W. L. Hargrove ◽  
Danilo Dos Santos Rheinheimer ◽  
Ricardo Ralisch ◽  
Daniel Tessier ◽  
...  

2017 ◽  
Vol 63 (12) ◽  
pp. 1661-1675 ◽  
Author(s):  
P. C. Moharana ◽  
R. K. Naitam ◽  
T. P. Verma ◽  
R. L. Meena ◽  
Sunil Kumar ◽  
...  

Soil Research ◽  
2014 ◽  
Vol 52 (5) ◽  
pp. 463 ◽  
Author(s):  
Zhongkui Luo ◽  
Enli Wang ◽  
Jeff Baldock ◽  
Hongtao Xing

The diversity of cropping systems and its variation could lead to great uncertainty in the estimation of soil organic carbon (SOC) stock across time and space. Using the pre-validated Agricultural Production Systems Simulator, we simulated the long-term (1022 years) SOC dynamics in the top 0.3 m of soil at 613 reference sites under 59 representative cropping systems across Australia’s cereal-growing regions. The point simulation results were upscaled to the entire cereal-growing region using a Monte Carlo approach to quantify the spatial pattern of SOC stock and its uncertainty caused by cropping system and environment. The predicted potential SOC stocks at equilibrium state ranged from 10 to 140 t ha–1, with the majority in a range 30–70 t ha–1, averaged across all the representative cropping systems. Cropping system accounted for ~10% of the total variance in predicted SOC stocks. The type of cropping system that determined the carbon input into soil had significant effects on SOC sequestration potential. On average, the potential SOC stock in the top 0.3 m of soil was 30, 50 and 60 t ha–1 under low-, medium- and high-input cropping systems in terms of carbon input, corresponding to –2, 18 and 26 t ha–1 of SOC change. Across the entire region, the Monte Carlo simulations showed that the potential SOC stock was 51 t ha–1, with a 95% confidence interval ranging from 38 to 64 t ha–1 under the identified representative cropping systems. Overall, predicted SOC stock could increase by 0.99 Pg in Australian cropland under the identified representative cropping systems with optimal management. Uncertainty varied depending on cropping system, climate and soil conditions. Detailed information on cropping system and soil and climate characteristics is needed to obtain reliable estimates of potential SOC stock at regional scale, particularly in cooler and/or wetter regions.


Sign in / Sign up

Export Citation Format

Share Document