scholarly journals Hydraulic Fracture Geometry Modeling Techniques for Extracting Unconventional Reservoirs

Author(s):  
Mohamed Ali Khalil ◽  
Abdunaser Omar Susi

This study aims to provide a comprehensive review of all hydraulic fracture geometry modeling techniques available in the conventional and unconventional reservoirs. We are introducing a comparison study between major available hydraulic fracture modeling techniques, advantages, and disadvantages of each one according to the latest related studies. The study includes the three general families of models: 2D models, pseudo-3D models, and fully 3D models. Consequently, the results of this work can be used for selecting the proper model to simulate or stimulate the reservoir to enhance oil recovery using hydraulic fracturing. Also, these results can be used for any future updates related to hydraulic fracturing stimulation based on the comparisons that were conducted.

2021 ◽  
Author(s):  
Ivan Krasnov ◽  
Oleg Butorin ◽  
Igor Sabanchin ◽  
Vasiliy Kim ◽  
Sergey Zimin ◽  
...  

Abstract With the development of drilling and well completion technologies, multi-staged hydraulic fracturing (MSF) in horizontal wells has established itself as one of the most effective methods for stimulating production in fields with low permeability properties. In Eastern Siberia, this technology is at the pilot project stage. For example, at the Bolshetirskoye field, these works are being carried out to enhance the productivity of horizontal wells by increasing the connectivity of productive layers in a low- and medium- permeable porous-cavernous reservoir. However, different challenges like high permeability heterogeneity and the presence of H2S corrosive gases setting a bar higher for the requirement of the well construction design and well monitoring to achieve the maximum oil recovery factor. At the same time, well and reservoir surveillance of different parameters, which may impact on the efficiency of multi-stage hydraulic fracturing and oil contribution from each hydraulic fracture, remains a challenging and urgent task today. This article discusses the experience of using tracer technology for well monitoring with multi-stage hydraulic fracturing to obtain information on the productivity of each hydraulic fracture separately.


2019 ◽  
Vol 46 (5) ◽  
pp. 1065-1072 ◽  
Author(s):  
Fujian ZHOU ◽  
Hang SU ◽  
Xingyuan LIANG ◽  
Leifeng MENG ◽  
Lishan YUAN ◽  
...  

1982 ◽  
Vol 22 (03) ◽  
pp. 321-332 ◽  
Author(s):  
M.E. Hanson ◽  
G.D. Anderson ◽  
R.J. Shaffer ◽  
L.D. Thorson

Abstract We are conducting a U.S. DOE-funded research program aimed at understanding the hydraulic fracturing process, especially those phenomena and parameters that strongly affect or control fracture geometry. Our theoretical and experimental studies consistently confirm the well-known fact that in-situ stress has a primary effect on fracture geometry, and that fractures propagate perpendicular to the least principal stress. In addition, we find that frictional interfaces in reservoirs can affect fracturing. We also have quantified some effects on fracture geometry caused by frictional slippage along interfaces. We found that variation of friction along an interface can result in abrupt steps in the fracture path. These effects have been seen in the mineback of emplaced fractures and are demonstrated both theoretically and in the laboratory. Further experiments and calculations indicate possible control of fracture height by vertical change in horizontal stresses. Preliminary results from an analysis of fluid flow in small apertures are discussed also. Introduction Hydraulic fracturing and massive hydraulic fracturing (MHF) are the primary candidates for stimulating production from tight gas reservoirs. MHF can provide large drainage surfaces to produce gas from the low- permeability formation if the fracture surfaces remain in the productive parts of the reservoir. To determine whether it is possibleto contain these fractures in the productive formations andto design the treatment to accomplish this requires a much broader knowledge of the hydraulic fracturing process. Identification of the parameters controlling fracture geometry and the application of this information in designing and performing the hydraulic stimulation treatment is a principal technical problem. Additionally, current measurement technology may not be adequate to provide the required data. and new techniques may have to be devised. Lawrence Livermore Natl. Laboratory has been conducting a DOE-funded research program whose ultimate goal is to develop models that predict created hydraulic fracture geometry within the reservoir. Our approach has been to analyze the phenomenology of the fracturing process to son out and identify those parameters influencing hydraulic fracture geometry. Subsequent model development will incorporate this information. Current theoretical and stimulation design models are based primarily on conservation of mass and provide little insight into the fracturing process. Fracture geometry is implied in the application of these models. Additionally, pressure and flow initiation in the fractures and their interjection with the fracturing process is not predicted adequately with these models. We have reported previously on some rock-mechanics aspects of the fracturing process. For example, we have studied, theoretically and experimentally, pressurized fracture propagation in the neighborhood of material interfaces. Results of interface studies showed that natural fractures in the interfacial region negate any barrier effect when the fracture is propagating from a lower modulus material toward a higher modulus material. On the other hand, some fracture containment could occur when the fracture is propagating from a higher modulus into a lower modulus material. Effect of moduli changes on the in-situ stress field have to be taken into consideration to evaluate fracture containment by material interfaces. Some preliminary analyses have been performed to evaluate how stress changes when material properties change, but we have not evaluated this problem fully. SPEJ P. 321^


Author(s):  
Juliana Souza Baioco ◽  
Breno Pinheiro Jacob ◽  
Luis Felipe Mazadiego

Abstract Unconventional reservoirs have become an important resource for hydrocarbons. The production of this type of reservoir is only feasible from massive stimulation. In this context, the study of hydraulic fracturing becomes important. The present work has the objective of evaluating the influence of reservoir parameters that are uncertain, in the optimization of hydraulic fracturing. The parameters that will be evaluated are: drainage radius, permeability, net-pay, temperature and pressure of the reservoir. The optimization model uses evolutionary algorithms to maximize the production of the fractured well and minimize the fracture cost.


2022 ◽  
Author(s):  
Azzan Al-Yaarubi ◽  
Sumaiya Al Bimani ◽  
Sataa Al Rahbi ◽  
Richard Leech ◽  
Dmitrii Smirnov ◽  
...  

Abstract Successful hydraulic fracturing is critical for hydrocarbon recovery from tight reservoirs. Fracture geometry is one essential quality indicator of the created fracture. The geometry provides information about the size of the created fracture and containment and verifies the pre-job modeling. Different techniques are applied to determine fracture geometry, and each has its own advantages and limitations. Due to its simplicity, the radioactive tracer log is commonly used to determine fracture placement and fracture height. Its main drawbacks include shallow depth of investigation, time dependency, and the requirement for multiple interventions for multistage fracturing operations. The crosswell microseismic technique probes a larger volume and it is potentially capable of providing fracture height, length, and orientation. Operational complexity and long processing turnaround time are the main challenges of this technique. Time-lapse shear slowness anisotropy analysis is an effective method to determine hydraulic facture height and orientation. In this technique, the shear slowness anisotropy is recorded before and after the fracture is created. The observed shear anisotropy difference indicates the intervals where the fractures were created, allowing these intervals lengths to be measured. Combining this analysis with gyroscopic data allows determining the fracture orientations. Compared to a tracer log, the differential casedhole sonic anisotropy (DCHSA) has a deeper depth of investigation, and it is time independent. Thus, the repeated log can be acquired at the end of the multistage fracturing operations. Compared to the microseismic technique, this new technique provides more precise fracture height and orientation. The new generation slim dipole sonic technology of 2.125-in. diameter extends the applicability of the DCHSA technique to smaller casing sizes. The shear differential method was applied to a vertical well that targeted the Athel formation in the south of the Sultanate of Oman. This formation is made of silicilyte and is characterized by very low permeability of about 0.01 md on average. Thus, hydraulic fracturing plays a critical role for the economic oil recovery in this reservoir. Aiming to achieve a better zonal contribution, the stimulation design was changed from a limited number of large fractures to an extensive multistage fracturing design in the subject well. Sixteen hydraulic fracturing stages were planned. The DCHSA was applied to provide accurate and efficient fracture geometry evaluation. The DCHSA accurately identified fracture intervals and their corresponding heights and orientations. This enabled effectively determining the created fracture quality and helped explain the responses of the production logs that were recorded during the well test. This study provided a foundation for the placement and completion design of the future wells in the subject reservoir. It particularly revealed adequate fracturing intervals and the optimum number of stages required to achieve optimum reservoir coverage and avoid vertical overlapping.


2013 ◽  
Author(s):  
Marie Van Steene ◽  
Magdalena Povstyanova ◽  
Mahmoud Gamal Semary ◽  
Anil Kumar Mathur ◽  
Aziza Ali ◽  
...  

2021 ◽  
Author(s):  
Maksim Filev ◽  
Vadim Soldatov ◽  
Igor Novikov ◽  
Jianhua Xu ◽  
Kirill Ovchinnikov ◽  
...  

Abstract The tracer-based production logging technology can be used to obtain the well production data continuously for several years without the need for risky well interventions and expensive equipment. The paper examines the case of placing polymer-coated tracers dopped proppant in a horizontal well with ten multi-stage frac intervals and using two different tracers dopped proppant codes for two frac ports (the first and the last ones) to identify the performance of the far and near zones of a hydraulic fracture. Upon the completion of the hydraulic fracturing operations, the collected reservoir fluid samples were studied in the laboratory. Chemical tracers contained in the samples were detected by flow cytofluorometry using custom-tailored machine learning-based software. The studies helped identify the productivity of each frac port, calculate the contribution of each port in percentage points, and also evaluate the productivity of the near and far hydraulic fracture zones in the first and the last intervals. The analysis provided data on the exact content of oil and water in the production profile for each frac interval. The results of tracer-based logging in the well in question revealed that the interval productivity is changing in the course of several months of surveillance. The most productive ports and those showing increasing oil flow rate were identified during quantitative analysis. The use of tracer dopped proppant with different codes within one multi-stage frac interval enabled detecting a peak release of chemical tracers from the far fracture zone in the initial periods of well operation followed by a consistent smoothing of the far and near zones’ production profiles. Laboratory analysis of reservoir fluid samples and hydraulic fracturing simulations proved the uniform distribution of proppant across the entire reservoir pay zone and laid the foundation for further research required to better understand the fracture geometry and reduce uncertainties in production optimization operations.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Zhihong Zhao ◽  
Jianchun Guo ◽  
Shou Ma

Hydraulic fracture propagation characteristics in glutenite formation are studied by a series of servo-controlled triaxial large-scale fracturing experiments. The experimental results show that the fractures extend along the gravel and sandstone cementing face, and fracture geometry in glutenite formation is complex, which is similar to network fractures. The phenomenon of the gravel being split has not been observed. In the process of the fracture extension, the extension pressure is fluctuating, and the degree of fluctuation is more drastic with the gravel diameter increase. This paper suggests that using large rate and multislug technology would increase the flow ability of the carrying fluid. The conclusions are significant to hydraulic fracturing in glutenite formation.


2021 ◽  
Author(s):  
Nguyen Dung ◽  
Cramer David ◽  
Danielson Tom ◽  
Snyder Jon ◽  
Roussel Nico ◽  
...  

Abstract Water hammer is oscillatory pressure behavior in a wellbore resulting from the inertial effect of flowing fluid being subjected to an abrupt change in velocity. It is commonly observed at the end of large-scale hydraulic fracturing treatments after fluid injection rate is rapidly reduced or terminated. In this paper, factors affecting treatment-related water hammer behavior are disclosed, and field studies are introduced correlating water hammer characteristics to fracture intensity and well productivity. A simulator based on fundamental fluid-mechanics concepts was developed to model water hammer responses for various wellbore configurations and treatment characteristics. Insight from the modeling work was used to develop an optimal process of terminating fluid injection to obtain a consistent, identifiable oscillatory response for evaluating water hammer periodicity, decay rate, and oscillatory patterns. A completion database was engaged in a semi-automated process to evaluate numerous treatments. A data screening method was developed and implemented for enhancing interpretation reliability. Derived water hammer components were correlated to fracture intensity, well productivity and in certain cases, loss of treatment confinement to the intended treatment interval. Using the above process, thousands of hydraulic fracturing treatments were evaluated, and the results of that work are included in this study. The treatments were performed in wells based in Texas, South America, and Canada and completed in low permeability and unconventional reservoirs. The water hammer decay rate was determined to be a reliable indication of the system friction (friction in the wellbore and hydraulic fracture network) that drains energy from the water hammer pulse. In unconventional reservoirs characterized by small differences in the minimum and maximum horizontal stresses, high system friction correlated positively with fracture intensity/complexity and well performance. Results were constrained with instantaneous shut-in pressure (ISIP) and pressure falloff measurements to identify instances of direct communication with previously treated offset wellbores. The resulting analyses provided: – identification of enhanced-permeability intervals – indications of hydraulic fracture geometry – assessment of treatment modifications intended to enhance fracture complexity – identification of loss of treatment confinement to the intended interval – location of associated points of failure in the wellbore Topics covered in the paper include: Introduction  Joukowsky Equation  Period and Boundary Conditions Review of Prior Work on Water Hammer Analysis Shut-In Pressure Data, Analysis, and Model  Data collection frequency  Data issues and requirements  Water Hammer Analytical Method  Water Hammer Model Effects on Water hammer signature  Fluid properties  Step-down rate change and duration  Perforation friction Applications  Identification of Boundary Condition  Identification of Treatment Stage Isolation  Identification of Casing Failure Depth  Identification of Excess Period (Excess Length) Case Study – Water Hammer Data in an Unconventional Reservoir  Interpretation of frac geometry and friction in the fracture  Relationship to well productivity


Sign in / Sign up

Export Citation Format

Share Document