scholarly journals Formulation Development, Characterization and In-vitro Evaluation of Tamoxifen Loaded Liposomes

Author(s):  
Md. Mazed Hasan ◽  
Md. Hamiduzzaman ◽  
Ishrat Jahan ◽  
A. H. M. Nazmul Hasan ◽  
Md. Asaduzzaman

Background: The study was aimed to prepare and evaluate tamoxifen loaded controlled release liposomes to reduce the side effects of tamoxifen during cancer treatment.  Methods: Different tamoxifen loaded liposomes were prepared by modified ether injection (MEIM) and thin film hydration method (TFHM) under prescribed conditions. The prepared liposomes were characterized by using optical microscopy, evaluating encapsulation efficiency, in-vitro and ex-vivo diffusion studies by using dialysis membrane and chicken intestinal sac respectively. Results: The data revealed that all of the liposomes were spherical in shape and stable under three physical conditions i.e. 4, 25 and 37 ± 2°C temperatures and 60 ±5% relative humidity. Additionally most of the liposomes followed zero order and class II release kinetics. It was also observed that with the increase of phospholipids and cholesterol, entrapment efficiency of liposome vesicles increased thus giving a controlled release drug delivery system but further increase reduced this efficiency at a certain level. Conclusion: The formulated control release liposomes might be a good drug delivery system for target oriented drug delivery with minimum side effects of tamoxifen during cancer treatment.

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2920
Author(s):  
Ameeduzzafar Zafar ◽  
Syed Sarim Imam ◽  
Nabil K. Alruwaili ◽  
Omar Awad Alsaidan ◽  
Mohammed H. Elkomy ◽  
...  

Hypertension is a cardiovascular disease that needs long-term medication. Oral delivery is the most common route for the administration of drugs. The present research is to develop piperine self-nanoemulsifying drug delivery system (PE-SNEDDS) using glyceryl monolinoleate (GML), poloxamer 188, and transcutol HP as oil, surfactant, and co-surfactant, respectively. The formulation was optimized by three-factor, three-level Box-Behnken design. PE-SNEDDs were characterized for globule size, emulsification time, stability, in-vitro release, and ex-vivo intestinal permeation study. The optimized PE-SNEDDS (OF3) showed the globule size of 70.34 ± 3.27 nm, percentage transmittance of 99.02 ± 2.02%, and emulsification time of 53 ± 2 s Finally, the formulation OF3 was transformed into solid PE-SNEDDS (S-PE-SNEDDS) using avicel PH-101 as adsorbent. The reconstituted SOF3 showed a globule size of 73.56 ± 3.54 nm, PDI of 0.35 ± 0.03, and zeta potential of −28.12 ± 2.54 mV. SEM image exhibited the PE-SNEDDS completely adsorbed on avicel. Thermal analysis showed the drug was solubilized in oil, surfactant, and co-surfactant. S-PE-SNEDDS formulation showed a more significant (p < 0.05) release (97.87 ± 4.89% in 1 h) than pure PE (27.87 ± 2.65% in 1 h). It also exhibited better antimicrobial activity against S. aureus and P. aeruginosa and antioxidant activity as compared to PE dispersion. The in vivo activity in rats exhibited better (p < 0.05) antihypertensive activity as well as 4.92-fold higher relative bioavailability than pure PE dispersion. Finally, from the results it can be concluded that S-PE-SNEDDS might be a better approach for the oral delivery to improve the absorption and therapeutic activity.


Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582092673
Author(s):  
Chuan Xie ◽  
Yan Zhan ◽  
Peng Wang ◽  
Bo Zhang ◽  
Yukun Zhang

Adipic dihydrazide and heparin were attached to ZnO quantum dots surface, and the ZnO-adipic dihydrazide-heparin nanocomplex was used as a drug delivery system to deliver paclitaxel for chemotherapy. The surface modification and the loading of paclitaxel were confirmed by Fourier transform infrared spectrum, featured by characteristic peaks from functional groups of adipic dihydrazide, heparin, and paclitaxel. The impacts of pH on the drug release were investigated, and the cytotoxicity studies were conducted with A549 cells. The pharmacokinetic study was conducted with male Wistar rats. Both in vitro and in vivo study indicated that ZnO-adipic dihydrazide-heparin-paclitaxel nanocomplex could deliver paclitaxel in a more controllable way, and it has the potential to be a high-efficiency drug delivery system for cancer treatment.


2019 ◽  
Vol 33 (10) ◽  
pp. 1394-1406 ◽  
Author(s):  
Juan Cai ◽  
Keyang Qian ◽  
Xueliang Zuo ◽  
Wuheng Yue ◽  
Yinzhu Bian ◽  
...  

Docetaxel (TXT) is acknowledged as one of the most important chemotherapy agents for gastric cancer (GC). PI3K/AKT signaling is frequently activated in GC, and its inhibitor LY294002 exerts potent antitumor effects. However, the hydrophobicity of TXT and the poor solubility and low bioavailability of LY294002 limit their clinical application. To overcome these shortcomings, we developed poly(lactic acid/glycolic) (PLGA) nanoparticles loaded with TXT and LY294002. PLGA facilitated the accumulation of TXT and LY294002 at the tumor sites. The in vitro functional results showed that PLGA(TXT+LY294002) exhibited controlled-release and resulted in a markedly reduced proliferative capacity and an elevated apoptosis rate. An in vivo orthotopic GC mouse model and xenograft mouse model confirmed the anticancer superiority and tumor-targeting feature of PLGA(TXT+LY294002). Histological analysis indicated that PLGA(TXT+LY294002) was biocompatible and had no toxicity to major organs. Characterized by the combined slow release of TXT and LY294002, this novel PLGA-based TXT/LY294002 drug delivery system provides controlled release and tumor targeting and is safe, shedding light on the future of targeted therapy against GC.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 305 ◽  
Author(s):  
Terutsugu Koya ◽  
Ippei Date ◽  
Haruhiko Kawaguchi ◽  
Asuka Watanabe ◽  
Takuya Sakamoto ◽  
...  

With recent advances in cancer vaccination therapy targeting tumor-associated antigens (TAAs), dendritic cells (DCs) are considered to play a central role as a cell-based drug delivery system in the bioactive immune environment. Ex vivo generation of monocyte-derived DCs has been conventionally applied in adherent manufacturing systems with separate loading of TAAs before clinical use. We developed DCs pre-pulsed with Wilms’ tumor (WT1) peptides in low-adhesion culture maturation (WT1-DCs). Quality tests (viability, phenotype, and functions) of WT1-DCs were performed for process validation, and findings were compared with those for conventional DCs (cDCs). In comparative analyses, WT1-DCs showed an increase in viability and recovery of the DC/monocyte ratio, displaying lower levels of IL-10 (an immune suppressive cytokine) and a similar antigen-presenting ability in an in vitro cytotoxic T lymphocytes (CTLs) assay with cytomegalovirus, despite lower levels of CD80 and PD-L2. A clinical study revealed that WT1-specific CTLs (WT1-CTLs) were detected upon using the WT1-DCs vaccine in patients with cancer. A DC vaccine containing TAAs produced under an optimized manufacturing protocol is a potentially promising cell-based drug delivery system to induce acquired immunity.


Author(s):  
Shyam Narayan Prasad ◽  
Ashok Kumar Sahoo ◽  
Abhijit V. Gothoskar

The present studies discuss about the quality by design (QbD)-based development and evaluation of chronomodulated release drug delivery system of amoxicillin trihydrate for management of bacterial infection. Initially, target product profile was defined and critical quality attributes were earmarked. Risk assessment study was performed for identifying the critical material attributes. Preformulation studies were carried out, and direct compression method was employed for the preparation of bilayer matrix tablets containing a delayed and a sustained release layer for preliminary optimization. Systematic formulation optimization was carried out using central composite design by selecting the concentration of Eudragit-L100 D55 and HPMCK4M. Mathematical modeling was performed and optimized compositions of the polymers were identified from the design space. Moreover, the prepared bilayer tablets were evaluated for various tablet properties including in vitro drug release study, release kinetics evaluation and characterized for FTIR, DSC, XRD, SEM studies, in vitro was-off test, antimicrobial assay and accelerated stability studies. In a nutshell, the present studies indicated the supremacy of designing a chronomodulated release bilayer tablet formulations of amoxicillin trihydrate for effective management of bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document