scholarly journals Design and Evaluation of Natamycin Nanocrystals Loaded In Situ Gel for Ophthalmic Administration

Author(s):  
Roshni Das ◽  
Marina Koland ◽  
S. M. Sindhoor

Background: Natamycin belongs to a large group of naturally occurring polyene antifungal antibiotics derived from Streptomyces natalensis. Natamycin has a restrictive pharmaceutical role because of its extremely low aqueous solubility, which severely reduces the bioavailability of the drug. To improve the absorption of the drug, nanocrystals of natamycin were prepared and incorporated into in situ gel. Aim: To improve the solubility and absorption of natamycin nanocrystals by preparing nanocrystal in situ gel of natamycin for ophthalmic delivery Methodology: Natamycin nanocrystal was prepared using Sono-Precipitation method. Box-Behnken approach was employed to assess the influence of independent variables, namely concentration of stabilizer, sonication time and amplitude on particle size and zeta potential of the prepared nanocrystal. Optimized natamycin nanocrystal in situ gel formulations was characterized for various parameters like pH, viscosity, drug content, in vitro drug release and ex vivo permeation studies. Results: The optimized formulation of natamycin nanocrystal with a particle size of  293.9nm and zeta potential -14.6mV was incorporated into in situ gels. The pH triggered in situ gel was prepared using Carbopol and Hydroxypropyl methylcellulose (HPMC)., which showed clear preparation, pH of the formulation was closed to the pH of tear fluid, i.e., 7.4, viscosity showed pseudoplastic behaviour with immediate gelation remained for an extended period, and the drug content was around 99.70%. From the characterizations given above, PF-4 was optimized and evaluated for In vitro drug release showing slow and sustained release when compared to the marketed formulation and followed first-order kinetics with the diffusion-controlled mechanism. Ex vivo permeation through goat's cornea of PF-4 showed better permeation than marketed formulation. The stability studies of PF-4 showed that formulation was stable at the appropriate condition. Conclusion: Nanocrystals formulations of natamycin was successfully formulated and incorporated into in situ gels. Further in vivo studies need to be carried out for confirmation of pharmacological activity

2020 ◽  
Vol 10 (1) ◽  
pp. 24-37
Author(s):  
Deepali Verma ◽  
Shreya Kaul ◽  
Neha Jain ◽  
Upendra Nagaich

Introduction: In the present research, erythromycin estolate loaded in-situ gel was formulated and evaluated for blepharitis in order to improve its therapeutic efficacy, precorneal residence time of the system and to enhance the ocular bioavailability. Material and Methods: The developed formulation was characterized by several parameters viz. FTIR, clarity, pH, gelation temperature, rheological studies, drug content, in vitro drug release studies, transcorneal permeation studies, bioadhesion studies, isotonicity and stability studies. Results: The optimized formulation exhibited non-fickian release diffusion with a sustained release of drug 82.76 ± 0.94% up to 8h and drug content 93.64%. Isotonicity revealed that the formulation was isotonic in nature and there was no shrinkage and busting of cells. Bioadhesion study was performed to check the adherence of the prepared in situ gel to the corneal surface for 4h. Ex vivo transcorneal permeation was observed to be significantly higher when compared with market eye drops. Histopathological studies were conducted to confirm the presence of normal ocular surface tissues by maintaining their morphological structures without causing damage to the tissues. The formulation was nonirritant as confirmed by the HET-CAM test. Stability studies and accelerated stability studies were conducted for 13 weeks and 26 weeks respectively and formulations were analyzed for the visual appearance, pH, viscosity, gelling capacity, drug content and in vitro drug release and results showed no change in the formulations. Conclusion: The formulation was therapeutically efficacious, sterile, stable and provided controlled release over a period of time. The developed system could be a viable alternative to conventional eye drops for treatment of various ocular diseases.


Author(s):  
Hussein K. Alkufi ◽  
Hanan J. Kassab

     Objective: The purpose of this study to develop and optimize nasal mucoadhesive in situ gel IG of sumatriptan ST (serotonin agonist) to enhance nasal residence time for migraine management.      Method: Cold method was used to prepare ST nasal in-situ gel, using thermosensitive polymers (poloxamer 407  and/or poloxamer 188) with a mucoadhesive polymer (hyaluronic acid HA) which were examined for gelation temperature and gelation time, pH, drug content, gel strength, spreadability, mucoadhesive force determination, viscosity,  in-vitro drug release, and the selected formula was subjected to ex-vivo permeation study and histological evaluation of the sheep mucosal tissue after application.     Results: The results showed that the formula IG7 prepared from poloxamer 407(19%), poloxamer188 (4%) and HA (0.5%)   had an optimum gelation temperature (32.66±1.52°C), gel  strength (43.66± 1.52 sec),  mucoadhesive force (8067.93± 746.45dyne\cm2), in-vitro drug release (95.98%) over 6hr, ex-vivo permeation study release (89.6%)  during the 6 h. study with no  histological or pathological change in the nasal sheep tissue.     Conclusion: The ease of administration via a nasal drop of ST coupled with less frequent administration and prolong drug release, will enhance patient compliance.


Author(s):  
RAJASHRI B. AMBIKAR ◽  
ASHOK V. BHOSALE

Objective: Purpose of the study to design and formulate Diclofenac sodium (DIC) microsponges. Methods: With varied polymer: drug ratio DIC loaded microsponges were prepared with Eudragit RS100 polymer by quasi solvent diffusion method. Microsponges evaluated for particle size, entrapment efficiency, drug content, in vitro drug release, Fourier Transform Infrared Spectroscopy (FTIR), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). DIC loaded microsponges incorporated into ocular in situ gel to attained controlled release by microsponge and improved residence time by gelling system. Ocular in situ gel evaluated for pH, drug content determination, gelling capacity, in vitro drug release and sterility study. Results: DSER4 microsponge formulation having polymer to drug ratio 1:7 showed satisfactory production yield (68.13%), entrapment efficiency (62.86%), drug content (80.73%), requisite particle size (less than 10 µm) (7.52 µm) and in vitro release 87.94% after 6 h. Selected DSER4 formulation was incorporate into in situ gel. Carbopol 940 forms stiff gel at higher pH so used as a gelling agent, whereas Hydroxypropyl Methylcellulose E4M was used as a viscosity-enhancing agent for the formulation of in situ gel in varied compositions. In situ gel formulation IG4 showed sustained release of 76.92% till the end of 8 h and satisfactory gelling capacity so IG4 further evaluated for sterility test. Rheological studies reveal the sol-gel transition of in situ gel occur at the physiological condition to form stiff gel. Conclusion: Prepared in situ gel formulations showed sustained drug release for a period of 8 h, which is satisfactory for management of ocular pain.


Author(s):  
Pooja Shettigar ◽  
Marina Koland ◽  
S. M. Sindhoor ◽  
Ananth Prabhu

Background: Clarithromycin is a macrolide antibiotic used in acne treatment, but it has poor solubility, which decreases its permeability through lipid barriers such as skin. Nanostructured lipid carriers can enhance the permeability of clarithromycin through the skin, thus improving its potential for controlling acne. Aim: To formulate and evaluate Nanostructured lipid carriers of clarithromycin for topical delivery in acne treatment Methods: Nanostructured lipid carriers were prepared by emulsification and ultrasonication methods using lipids such as glycerol monostearate and oleic with poloxamer 188 as stabilizer. These nano-carriers were optimized with the help of the Quality by Design (QbD) approach employing Design-Expert® software. The nanoparticles were characterized for particle size analysis, zeta potential, drug-excipient compatibility, entrapment efficiency, and surface morphology by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The nano-carriers were also investigated for in vitro drug release and ex vivo permeation through excised goat skin. The optimized formulation was incorporated into topical carbopol gel base, formulated and examined for pH, viscosity, spreadability, in vitro drug release, ex vivo permeation, and stability under accelerated conditions. Results: The average particle size of the optimized nanoparticles was 164.8 nm, and zeta potential was -39.2 mV. FTIR studies showed that drug and lipids are compatible with each other. The morphology study by SEM and TEM showed spherical shaped particles. The entrapment efficiency of the optimized formulation was found to be 88.16%. In vitro drug release studies indicated sustained release from the formulation due to diffusion through the lipid matrix of the particles. The ex vivo permeation study using goat skin produced greater permeation from the NLC gel (89.5%) than marketed gel (65%) due to the lipid solubility of the nanoparticles in the skin. The formulation was stable under accelerated conditions. Conclusion: The optimized formulation can be considered as promising nano-carriers suitable for the sustained release of clarithromycin into the skin for effective control of acne.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1218
Author(s):  
Mohammad A. Altamimi ◽  
Afzal Hussain ◽  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Usamah Abdulrahman Alnemer

Introduction: Luteolin (LUT) is natural flavonoid with multiple therapeutic potentials and is explored for transdermal delivery using a nanocarrier system. LUT loaded cationic nanoemulsions (CNE1–CNE9) using bergamot oil (BO) were developed, optimized, and characterized in terms of in vitro and ex vivo parameters for improved permeation. Materials and methods: The solubility study of LUT was carried out in selected excipients, namely BO, cremophor EL (CEL as surfactant), labrasol (LAB), and oleylamine (OA as cationic charge inducer). Formulations were characterized with globular size, polydispersity index (PDI), zeta potential, pH, and thermodynamic stability studies. The optimized formulation (CNE4) was selected for comparative investigations (% transmittance as %T, morphology, chemical compatibility, drug content, in vitro % drug release, ex vivo skin permeation, and drug deposition, DD) against ANE4 (anionic nanoemulsion for comparison) and drug suspension (DS). Results: Formulations such as CNE1–CNE9 and ANE4 (except CNE6 and CNE8) were found to be stable. The optimized CNE4 based on the lowest value of globular size (112 nm), minimum PDI (0.15), and optimum zeta potential (+26 mV) was selected for comparative assessment against ANE4 and DS. The %T values of CNE1–CNE9 were found to be ˃95% and CEL content slightly improved the %T value. The spherical CNE4 was compatible with excipients and showed % total drug content in the range of 97.9–99.7%. In vitro drug release values from CNE4 and ANE4 were significantly higher than DS. Moreover, permeation flux (138.82 ± 8.4 µg/cm2·h), enhancement ratio (8.23), and DD (10.98%) were remarkably higher than DS. Thus, ex vivo parameters were relatively high as compared to DS which may be attributed to nanonization, surfactant-mediated reversible changes in skin lipid matrix, and electrostatic interaction of nanoglobules with the cellular surface. Conclusion: Transdermal delivery of LUT can be a suitable alternative to oral drug delivery for augmented skin permeation and drug deposition.


Author(s):  
Sindhoor S M ◽  
Sneh Priya ◽  
Amala Maxwell

Objective: The aim of the present study was to formulate and evaluate the novel in situ gel of lafutidine for gastroretentive drug deliveryMethods: A gastroretentive in situ gel of lafutidine was formulated by pH-triggered ionic gelation method using different concentrations of gelling polymer such as sodium alginate, gellan gum, and xanthum gum. Prepared formulations were evaluated for viscosity, density, buoyancy lag time and buoyancy duration, and drug content. In vitro drug release studies of all formulations were also performed. In vivo fluorescence imaging study was conducted for optimized formulation and compared with control.Results: The concentration of gelling agents and release retardant polymers significantly affected viscosity, floating behavior, and in vitro drug release of the formulations. The pH and drug content were found in the range of 6.72–7.20 and 88.74–95.33%, respectively. Floating lag time was <2 min; duration of floating was more than 12 h. Minimum and maximum in vitro drug release were found to be for formulation F9 (51.74%) and F1 (82.76%), respectively, at the end of 12 h. The drug was released from the all the formulations in a sustained manner. In vivo studies confirmed the gastroretention of the formulation in mice stomach for 8 h. Stability studies indicated that the there was no significant change in the visual appearance, floating behavior, and drug content.Conclusion: The gastroretentive in situ gel system, prolonged the gastric residence time, thereby targeting site-specific drug release in the upper gastrointestinal tract.


2020 ◽  
Vol 9 (1) ◽  
pp. 789-795

The aim of the research work was to fabricate the nanosuspension of etoricoxib with polyherbal components (extract of ginger root and basil leaf) to enhance the solubility of API; furthermorein situ gel forming system for stomach specific drug delivery was prepared utilizing formulated nanosuspension as base. The objective of the present research is to enhance the solubility of poorly aqueous soluble drug by fabricating nanoparticles and improve their residence time within stomach by formulating in situ gel forming system. Tamarind seed polysaccharide as polymer, etoricoxib as drug, ethanolic extract of ginger (GE) and basil (BE), was used for preparation of nanoparticles.Solvent antisolvent precipitation method was used to prepare nanoparticles. The fabricated nanoparticles were evaluated for various parameters such as physical appearance, Scanning electron microscope, drug content, in-vitro drug release. For preparation of in-situ gel containing nanoparticles, tamarind seed polysaccharides, calcium carbonate and sodium alginate were used. The prepared formulations were evaluated for different characterization parameters such as,- pH, viscosity, floating behaviour, drug content, in-vitro drug release and in-vitro cytotoxic study. The in-situ gel containing nanoparticles were successfully prepared and evaluated. Firstly, the nanoparticles were evaluated for physical appearance, Scanning electron microscope, drug content, in-vitro drug release and found that the formulations were clear as well as homogenous, size of nanoparticles was evaluated in the range of 498nm to 587nm, the drug content of etoricoxib was found in the range of 71.38±0.01 (F5) to 79.45±0.01 (F6), the drug content of GE was found in the range of 69.25±0.05 (F4) to 74.25±0.02 (F1) and the drug content of BE was 69.48±0.09 (F1) to 75.59±0.08 (F6). The drug release was taken up to 12 h and found to be 99%. In-situ gel containing nanoparticles were also evaluated for different parameters such as pH, viscosity, floating behaviour, drug content, and in-vitro drug release. The pH of the prepared formulation was found to be in the range of 7.1±0.04 to 7.5±0.02. The viscosity of the prepared formulation was found in the range of 11.25±0.023 to 12.78 ±0.025. The lag time was found in the range of 11 to 20 sec and floating time was upto 24 h. The drug release was taken up to 8 h and found to be 99±0.2%. It can be concluded that etoricoxib with phytoconstituents (GE and BE) improved its potential to control the growth of human colon cancer cell line (HT-29) in in-vitro conditions. It was concluded from the findings that the in-situ gel containing nanoparticles of etoricoxib from solvent antisolvent method was successfully prepared and found that it has improved the solubility of the poorly soluble drug etoricoxib and dissolution rates.


2020 ◽  
Vol 15 (1) ◽  
pp. 41-67
Author(s):  
Shreya Kaul ◽  
Neha Jain ◽  
Jaya Pandey ◽  
Upendra Nagaich

Introduction: The main purpose of the research was to develop, optimize and characterize tobramycin sulphate loaded chitosan nanoparticles based gel in order to ameliorate its therapeutic efficacy, precorneal residence time, stability, targeting and to provide controlled release of the drug. Methods: Box-Behnken design was used to optimize formulation by 3-factors (chitosan, STPP and tween 80) and 3-levels. Developed formulation was subjected for characterizations such as shape and surface morphology, zeta potential, particle size, in vitro drug release studies, entrapment efficiency of drug, visual inspection, pH, viscosity, spreadability, drug content, ex vivo transcorneal permeation studies, ocular tolerance test, antimicrobial studies, isotonicity evaluation and histopathology studies. Results: Based on the evaluation parameters, the optimized formulation showed a particle size of 43.85 ± 0.86 nm and entrapment efficiency 91.56% ± 1.04, PDI 0.254. Cumulative in vitro drug release was up to 92.21% ± 1.71 for 12 hours and drug content was found between 95.36% ± 1.25 to 98.8% ± 1.34. TEM analysis unfolded spherical shape of nanoparticles. TS loaded nanoparticulate gel exhibited significantly higher transcorneal permeation as well as bioadhesion when compared with marketed formulation. Ocular tolerance was evaluated by HET-CAM test and formulation was non-irritant and well-tolerated. Histopathology studies revealed that there was no evidence of damage to the normal structure of the goat cornea. As per ICH guidelines, stability studies were conducted and were subjected for 6 months. Conclusion: Results revealed that the developed formulation could be an ideal substitute for conventional eye drops for the treatment of bacterial keratitis.


Author(s):  
Mohammad Irshad Reza ◽  
Divya Goel ◽  
Rahul Kumar Gupta ◽  
Musarrat Hussain Warsi

Objective: The objective of the present work was to formulate and characterize nano dispersive gel (NDG) for topical delivery of water-insoluble antifungal agent ketoconazole in order to enhance its solubility, penetration through the skin and antifungal activity.Methods: Nano dispersion of the drug was first prepared by swollen micelles technique (SMT) using tween 80 and chloroform which is then incorporated into the gel using carbopol 934. Ten formulations of ketoconazole loaded NDG was prepared and characterized for different physicochemical parameters like homogeneity, pH, spreadability, extrudability, practical yield, drug content, in vitro drug release, ex vivo permeation study, and biological parameter antifungal activity.Results: The formulated topical preparation exhibit pH in the range of 6.5 to 7.4, and unveiled excellent homogeneity, spreadability and extrudability. Out of 10 formulations, formulation F4 showed maximum drug content of 95.56±1.13% and practical yield of 97.23±0.51%. The in vitro drug release studies were performed using pH 7.4 phosphate buffer. Formulation F4 showed best in vitro drug release 96.52±0.52% at the end of 24 h of study. Ex vivo permeation study of formulation F4 carried out using franz diffusion cell, also manifested good permeation and flux of drug across the chicken skin. Antifungal activity test of formulation F4 was carried out by the cup plate method using Aspergillus niger strain against marketed ketoconazole unveiled higher antifungal activity than marketed one.Conclusion: The study confirmed formulation F4 to be an optimized and promising formulation for the effective treatment of topical fungal infections with enhanced solubility and penetration through the skin.


Author(s):  
Anuja T. Kadam ◽  
Rahul L. Jadhav ◽  
Pradnya B. Salunke ◽  
Satwashila S, Kadam

Objective: The object of the present study was to formulate and evaluate in-situ gel of modified chitosan by using temperature triggered method to improve bioavailability.Methods: Modified chitosan-based moxifloxacin HCl was prepared by cold method. polaxomer 407 adding in distilled water and this solution kept in the refrigerator. Modified chitosan and moxifloxacin HCl was dissolved separately in distilled water and added to the polymeric solution with continuous stirring until thoroughly mixed. Prepared formulation was evaluated for drug content, gelling capacity, rheological study, in vitro drug release behavior, measurement of phase change temperature, antibacterial study, release kinetics, statistical analysis.Results: The prepared formulations were evaluated for their, drug content, gelation temperature, in vitro drug release studies, rheological study and release kinetics. All batches of in situ formulations had satisfactory pH ranging from 6.2±0.2, drug content between 98.8±0.2 showing uniform distribution of drug. As the concentration of each polymeric component was increased, there was a decrease in phase change temperature. The in vitro drug release decreased with increase in polymeric concentrations. The antibacterial efficiency of the selected formulation against staphylococcus aureus confirmed that designed formulation has prolonged effect and retained its properties against bacterial infection.Conclusion: The prepared in situ gelling formulation had the appropriate combination of polaxomer 407 and modified chitosan were suitable satisfactorily sustained the drug release from moxifloxacin HCl in situ gel. The prepared formulation of moxifloxacin HCl appears to be promising drug delivery for bacterial infectious disease.


Sign in / Sign up

Export Citation Format

Share Document