scholarly journals Crisis in Sickle Cell Disease: Review Article

Author(s):  
Syed Athhar Saqqaf ◽  
Rajendra Borkar

Sickle cell disease is a very common inherited disorder of the hemoglobin. It is inherited in an autosomal recessive manner. Most affected are the people of African, Indian and Arabian origin. It occurs due to change in the single base pair gene wherein thymine replaces adenine in the 6th codon of the beta-globin gene. This result in the sickling shape of the red blood cells. Sickle cell disease includes a variety of phenotypes like the SS, AS, Sickle-thal, SC patterns, etc. Sickle cell- SS pattern also termed as sickle cell anemia is the most common of form of the disorder and is also responsible for the morbidity and mortality caused by the disorder. The sickling pattern of the red blood cells occludes the blood vessels and leads to a wide range of complication in the affected individuals. These complications can be seen in number of different systems of the body and also multiple systems at the same time. These complications are termed as crisis, which then include the vaso-occlusive crisis, acute chest syndrome, splenic sequestration crisis, etc. These crises can negatively affect the quality of life to a large effect, but are also largely controllable or rather delayed and effectively managed as far as possible with reduced effect in the normal well being. Hence the knowledge about these crisis and their treatment is an important aspect of medical practice, especially in the countries where this disorder is commonly seen. Here in this review article we aim to highlight the major crises seen in sickle cell disease and their treatment in brief.

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 1050 ◽  
Author(s):  
Marilyn J. Telen

Although production of hemoglobin S, the genetic defect that causes sickle cell disease (SCD), directly affects only red blood cells, the manifestations of SCD are pervasive, and almost every cell type and organ system in the body can be involved. Today, the vast majority of patients with SCD who receive modern health care reach adulthood thanks to vaccine prophylaxis and improvements in supportive care, including transfusion. However, once patients reach adulthood, they commonly experience recurrent painful vaso-occlusive crises and frequently have widespread end-organ damage and severely shortened life expectancies. Over the last several decades, research has elucidated many of the mechanisms whereby abnormal red blood cells produce such ubiquitous organ damage. With these discoveries have come new ways to measure disease activity. In addition, new pharmaceutical interventions are now being developed to address what has been learned about disease mechanisms.


2019 ◽  
Vol 7 (1) ◽  
pp. 97
Author(s):  
Varsha P. Patel ◽  
Archana U. Gandhi ◽  
Chineen Shah

Background: Sickle cell disorders are structural hemoglobinopathies, rendering red blood cells sickle shaped, less deformable and sticky leading to microvascular vaso-occlusion and premature red blood cells destruction which leads to varied clinical manifestations. It leads to lifelong morbidity thus affecting quality of life and contributes to early mortality thereby reducing the key national resources- the healthy workforce. This study was done to evaluate epidemiological and clinical profile of sickle cell disease attending the centre.Methods: This study was cross-sectional, observational study conducted at tertiary care hospital in Gujarat. After taking ethical clearance patients were enrolled as per inclusion and exclusion criteria and epidemiological and clinical profile of sickle cell disease patients was studied.Results: Mean age of sickle cell disease was 22.58 years. It was found in tribal communities of Gujarat like Rathwa, Baria, Tadvi etc. Commonest symptom was musculoskeletal pain (86.84%), followed by jaundice (71.05%), fever, dyspnoea, abdominal pain and chest pain. Most common systemic manifestation was pain crises (60.66%), followed by hemolytic anemia (31.15%), acute chest syndrome (30%), consolidation (11.67%), hepatopathy (10%) and avascular necrosis of hip. (6.56%).Conclusions: Sickle cell disease is seen in younger patients. In Gujarat mainly tribal communities are affected. Major systemic manifestations of sickle cell disease include pain crisis followed by hemolytic crisis, acute chest syndrome, hepatopathy and AVN of hip.    


2020 ◽  
Vol 1 (5) ◽  
pp. 01-04
Author(s):  
Priyatham Kumar

Sickle Cell Disease (SCD) is considered a group of genetic red blood cell (RBC) disorders. Healthy red blood cells (RBC) are round in shape and migrates throughout the body to carry oxygen in the small blood vessels. In SCD, the RBC turns into hard and sticky, and the shape is similar to a C-Shaped tool called "SICKLE." Because of the early death of the sickle cells, a constant shortage of red blood cells arises. Because of the typical shape of the sickle cells, their movement in the blood vessel is not as smooth as normal RBC and get stuck and clog the blood flow leading to anemia. The changes in shape make the cells more easily destroyed, causing anemia. Defective hemoglobin is the primary cause of SCD.


1996 ◽  
Vol 76 (03) ◽  
pp. 322-327 ◽  
Author(s):  
Dominique Helley ◽  
Amiram Eldor ◽  
Robert Girot ◽  
Rolande Ducrocq ◽  
Marie-Claude Guillin ◽  
...  

SummaryIt has recently been proved that, in vitro, red blood cells (RBCs) from patients with homozygous β-thalassemia behave as procoagulant cells. The procoagulant activity of β-thalassemia RBCs might be the result of an increased exposure of procoagulant phospholipids (i. e. phosphatidylserine) in the outer leaflet of the membrane. In order to test this hypothesis, we compared the catalytic properties of RBCs of patients with β-thalassemia and homozygous sickle cell disease (SS-RBCs) with that of controls. The catalytic parameters (Km, kcat) of prothrombin activation by factor Xa were determined both in the absence and in the presence of RBCs. The turn-over number (kcat) of the reaction was not modified by normal, SS- or (3-thalassemia RBCs. The Km was lower in the presence of normal RBCs (mean value: 9.1 µM) than in the absence of cells (26 µM). The Km measured in the presence of either SS-RBCs (mean value: 1.6 µM) or β-thalassemia RBCs (mean value: 1.5 pM) was significantly lower compared to normal RBCs (p <0.001). No significant difference was observed between SS-RBCs and p-thalassemia RBCs. Annexin V, a protein with high affinity and specificity for anionic phospholipids, inhibited the procoagulant activity of both SS-RBCs and (3-thalassemia RBCs, in a dose-dependent manner. More than 95% inhibition was achieved at nanomolar concentrations of annexin V. These results indicate that the procoagulant activity of both β-thalassemia RBCs and SS-RBCs may be fully ascribed to an abnormal exposure of phosphatidylserine at the outer surface of the red cells.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yuncheng Man ◽  
Debnath Maji ◽  
Ran An ◽  
Sanjay Ahuja ◽  
Jane A Little ◽  
...  

Alterations in the deformability of red blood cells (RBCs), occurring in hemolytic blood disorders such as sickle cell disease (SCD), contributes to vaso-occlusion and disease pathophysiology. However, there are few...


Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Marilyn J. Telen

AbstractA number of lines of evidence now support the hypothesis that vaso-occlusion and several of the sequelae of sickle cell disease (SCD) arise, at least in part, from adhesive interactions of sickle red blood cells, leukocytes, and the endothelium. Both experimental and genetic evidence provide support for the importance of these interactions. It is likely that future therapies for SCD might target one or more of these interactions.


2021 ◽  
Vol 7 ◽  
Author(s):  
Anupam Aich ◽  
Yann Lamarre ◽  
Daniel Pereira Sacomani ◽  
Simone Kashima ◽  
Dimas Tadeu Covas ◽  
...  

Sickle cell disease (SCD) is the monogenic hemoglobinopathy where mutated sickle hemoglobin molecules polymerize to form long fibers under deoxygenated state and deform red blood cells (RBCs) into predominantly sickle form. Sickled RBCs stick to the vascular bed and obstruct blood flow in extreme conditions, leading to acute painful vaso-occlusion crises (VOCs) – the leading cause of mortality in SCD. Being a blood disorder of deformed RBCs, SCD manifests a wide-range of organ-specific clinical complications of life (in addition to chronic pain) such as stroke, acute chest syndrome (ACS) and pulmonary hypertension in the lung, nephropathy, auto-splenectomy, and splenomegaly, hand-foot syndrome, leg ulcer, stress erythropoiesis, osteonecrosis and osteoporosis. The physiological inception for VOC was initially thought to be only a fluid flow problem in microvascular space originated from increased viscosity due to aggregates of sickled RBCs; however, over the last three decades, multiple molecular and cellular mechanisms have been identified that aid the VOC in vivo. Activation of adhesion molecules in vascular endothelium and on RBC membranes, activated neutrophils and platelets, increased viscosity of the blood, and fluid physics driving sickled and deformed RBCs to the vascular wall (known as margination of flow) – all of these come together to orchestrate VOC. Microfluidic technology in sickle research was primarily adopted to benefit from mimicking the microvascular network to observe RBC flow under low oxygen conditions as models of VOC. However, over the last decade, microfluidics has evolved as a valuable tool to extract biophysical characteristics of sickle red cells, measure deformability of sickle red cells under simulated oxygen gradient and shear, drug testing, in vitro models of intercellular interaction on endothelialized or adhesion molecule-functionalized channels to understand adhesion in sickle microenvironment, characterizing biomechanics and microrheology, biomarker identification, and last but not least, for developing point-of-care diagnostic technologies for low resource setting. Several of these platforms have already demonstrated true potential to be translated from bench to bedside. Emerging microfluidics-based technologies for studying heterotypic cell–cell interactions, organ-on-chip application and drug dosage screening can be employed to sickle research field due to their wide-ranging advantages.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-30
Author(s):  
Yuanbin Song ◽  
Rana Gbyli ◽  
Liang Shan ◽  
Wei Liu ◽  
Yimeng Gao ◽  
...  

In vivo models of human erythropoiesis with generation of circulating mature human red blood cells (huRBC) have remained elusive, limiting studies of primary human red cell disorders. In our prior study, we have generated the first combined cytokine-liver humanized immunodeficient mouse model (huHepMISTRG-Fah) with fully mature, circulating huRBC when engrafted with human CD34+ hematopoietic stem and progenitor cells (HSPCs)1. Here we present for the first time a humanized mouse model of human sickle cell disease (SCD) which replicates the hallmark pathophysiologic finding of vaso-occlusion in mice engrafted with primary patient-derived SCD HSPCs. SCD is an inherited blood disorder caused by a single point mutation in the beta-globin gene. Murine models of SCD exclusively express human globins in mouse red blood cells in the background of murine globin knockouts2 which exclusively contain murine erythropoiesis and red cells and thus fail to capture the heterogeneity encountered in patients. To determine whether enhanced erythropoiesis and most importantly circulating huRBC in engrafted huHepMISTRG-Fah mice would be sufficient to replicate the pathophysiology of SCD, we engrafted it with adult SCD BM CD34+ cells as well as age-matched control BM CD34+ cells. Overall huCD45+ and erythroid engraftment in BM (Fig. a, b) and PB (Fig. c, d) were similar between control or SCD. Using multispectral imaging flow cytometry, we observed sickling huRBCs (7-11 sickling huRBCs/ 100 huRBCs) in the PB of SCD (Fig. e) but not in control CD34+ (Fig. f) engrafted mice. To determine whether circulating huRBC would result in vaso-occlusion and associated findings in SCD engrafted huHepMISTRG-Fah mice, we evaluated histological sections of lung, liver, spleen, and kidney from control and SCD CD34+ engrafted mice. SCD CD34+ engrafted mice lungs showed an increase in alveolar macrophages (arrowheads) associated with alveolar hemorrhage and thrombosis (arrows) but not observed control engrafted mice (Fig. g). Spleens of SCD engrafted mice showed erythroid precursor expansion, sickled erythrocytes in the sinusoids (arrowheads), and vascular occlusion and thrombosis (arrows) (Fig. h). Liver architecture was disrupted in SCD engrafted mice with RBCs in sinusoids and microvascular thromboses (Fig. i). Congestion of capillary loops and peritubular capillaries and glomeruli engorged with sickled RBCs was evident in kidneys (Fig. j) of SCD but not control CD34+ engrafted mice. SCD is characterized by ineffective erythropoiesis due to structural abnormalities in erythroid precursors3. As a functional structural unit, erythroblastic islands (EBIs) represent a specialized niche for erythropoiesis, where a central macrophage is surrounded by developing erythroblasts of varying differentiation states4. In our study, both SCD (Fig. k) and control (Fig. l) CD34+ engrafted mice exhibited EBIs with huCD169+ huCD14+ central macrophages surrounded by varying stages of huCD235a+ erythroid progenitors, including enucleated huRBCs (arrows). This implies that huHepMISTRG-Fah mice have the capability to generate human EBIs in vivo and thus represent a valuable tool to not only study the effects of mature RBC but also to elucidate mechanisms of ineffective erythropoiesis in SCD and other red cell disorders. In conclusion, we successfully engrafted adult SCD patient BM derived CD34+ cells in huHepMISTRG-Fah mice and detected circulating, sickling huRBCs in the mouse PB. We observed pathological changes in the lung, spleen, liver and kidney, which are comparable to what is seen in the established SCD mouse models and in patients. In addition, huHepMISTRG-Fah mice offer the opportunity to study the role of the central macrophage in human erythropoiesis in health and disease in an immunologically advantageous context. This novel mouse model could therefore serve to open novel avenues for therapeutic advances in SCD. Reference 1. Song Y, Shan L, Gybli R, et. al. In Vivo reconstruction of Human Erythropoiesis with Circulating Mature Human RBCs in Humanized Liver Mistrg Mice. Blood. 2019;134:338. 2. Ryan TM, Ciavatta DJ, Townes TM. Knockout-transgenic mouse model of sickle cell disease. Science. 1997;278(5339):873-876. 3. Blouin MJ, De Paepe ME, Trudel M. Altered hematopoiesis in murine sickle cell disease. Blood. 1999;94(4):1451-1459. 4. Manwani D, Bieker JJ. The erythroblastic island. Curr Top Dev Biol. 2008;82:23-53. Disclosures Xu: Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Flavell:Zai labs: Consultancy; GSK: Consultancy.


2013 ◽  
Vol 35 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Daiane Cobianchi da Costa ◽  
Jordão Pellegrino Jr ◽  
Gláucia Andréia Soares Guelsin ◽  
Karina Antero Rosa Ribeiro ◽  
Simone Cristina Olenscki Gilli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document