scholarly journals Dynamics of Multiple Slip and Thermal Radiation on Hydromagnetic Casson Nanofluid Flow over a Nonlinear Porous Stretchable Surface

Author(s):  
O. E. Omotola ◽  
E. O. Fatunmbi

Aims/ Objectives: This paper examines the dynamics of multiple slip together with thermal radiation effects on the transport of a magnetohydrodynamic Casson nanofluid passing a nonlinear porous stretchable sheet in the existence of viscous dissipation and chemical reaction.Study Design: Cross-sectional study. Methodology: The outlining equations modeling the transport phenomenon are simplified into nonlinear ordinary differential equations via the approach of similarity transformations and subsequently analyzed numerically by shooting techniques alongside Runge-Kutta Fehlberg scheme.Results: The outcomes of decisive parameters affecting the flow, heat, and nanoparticle concentration are graphically deliberated. From the investigation, it is revealed that Brownian motion, viscous dissipation, and thermophoresis parameters augment the thermal boundary layer and propel an upward growth in the temperature profile. Furthermore, the slip factor decelerates the flow and heat dissipation while the fluid movement drags in the existence of the magnetic field. Conclusion: The results obtained in this study compared favourably well with existing related studies in literature under limiting scenarios.

2018 ◽  
Vol 150 ◽  
pp. 06036 ◽  
Author(s):  
Yap Bing Kho ◽  
Abid Hussanan ◽  
Norhafizah Mohd Sarif ◽  
Zulkhibri Ismail ◽  
Mohd Zuki Salleh

The boundary layer heat and mass transfer flow of Casson nanofluid over a stretching sheet with constant wall temperature (CWT) under the magnetic field and thermal radiation effects is investigated numerically. Using similarity transformations, the governing equations are reduced to a set of nonlinear ordinary differential equations (ODEs). These equations are solved numerically by Shooting method. The effects of Casson parameter, magnetic parameter, porosity parameter, radiation parameter, Prandtl number, Brownian parameter and thermophoresis parameter on velocity, temperature and concentration fields are shown graphically and discussed. The results show that increase in Casson parameter causes the wall temperature increase well in the nanofluid.


2020 ◽  
Vol 11 ◽  
pp. 1303-1315
Author(s):  
Ganji Narender ◽  
Kamatam Govardhan ◽  
Gobburu Sreedhar Sarma

This article proposes a numerical model to investigate the impact of the radiation effects in the presence of heat generation/absorption and magnetic field on the magnetohydrodynamics (MHD) stagnation point flow over a radially stretching sheet using a Casson nanofluid. The nonlinear partial differential equations (PDEs) describing the proposed flow problem are reduced to a set of ordinary differential equations (ODEs) via suitable similarity transformations. The shooting technique and the Adams–Moulton method of fourth order are used to obtain the numerical results via the computational program language FORTRAN. Nanoparticles have unique thermal and electrical properties which can improve heat transfer in nanofluids. The effects of pertinent flow parameters on the nondimensional velocity, temperature and concentration profiles are presented. Overall, the results show that the heat transfer rate increases for higher values of the radiation parameter in a Casson nanofluid.


2017 ◽  
Vol 13 (4) ◽  
pp. 628-647 ◽  
Author(s):  
Archana M. ◽  
Gireesha B.J. ◽  
Prasannakumara B.C. ◽  
Rama Subba Reddy Gorla

Purpose The effect of non-linear thermal radiation and variable thermo-physical properties are investigated in the Falkner-Skan flow of a Casson nanofluid in the presence of magnetic field. The paper aims to discuss this issue. Design/methodology/approach Selected bunch of similarity transformations are used to reduce the governing partial differential equations into a set of non-linear ordinary differential equations. The resultant equations are numerically solved using Runge-Kutta-Fehlberg fourth-fifth-order method along with shooting technique. Findings The velocity, temperature and concentration profiles are evaluated for several emerging physical parameters and are analyzed through graphs and tables in detail. Research limitations/implications This study only begins to reveal the research potential and pitfalls of research and publishing on boundary-layer flow, heat and mass transfer of Casson nanofluid past and the moving and static wedge-shaped bodies. Originality/value It is found that the presence of non-linear thermal radiation and variable properties has more influence in heat transfer. Furthermore, temperature profile increases as the radiation parameter increases.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Kalpna Sharma ◽  
Sumit Gupta

AbstractThis paper investigates steady two dimensional flow of an incompressible magnetohydrodynamic (MHD) boundary layer flow and heat transfer of nanofluid over an impermeable surface in presence of thermal radiation and viscous dissipation. By using similarity transformation, the arising governing equations of momentum, energy and nanoparticle concentration are transformed into coupled nonlinear ordinary differential equations, which are than solved by homotopy analysis method (HAM). The effect of different physical parameters, namely, Prandtl number Pr, Eckert number


2014 ◽  
Vol 30 (3) ◽  
pp. 289-297 ◽  
Author(s):  
D. Pal ◽  
K. Vajravelu ◽  
G. Mandal

ABSTRACTIn this paper, mixed convection stagnation point flow of nanofluids over a stretching/shrinking surface is studied numerically in the presence of thermal radiation and viscous dissipation. The governing boundary layer equations are transformed into a system of nonlinear ordinary differential equations, by using a similarity transformation, which are then solved numerically using a fifth-order Runge-Kutta-Fehlberg method with shooting technique. The effects of various physical parameters are analyzed and discussed. Computed results are presented in graphical and tabular forms. It is found that the Richardson number, thermal radiation and internal heat generation/absorption have interesting and significant effects on skin-friction and local Nusselt number for all the three types of nanofluids.


2020 ◽  
Vol 9 (11) ◽  
pp. 9259-9271
Author(s):  
K.R. Babu ◽  
G. Narender ◽  
K. Govardhan

A two-dimensional stream of an magnetohydrodynamics (MHD) Eyring-Powell fluid on a stretching surface in the presence of thermal radiation, viscous dissipation and the Joule heating is analyzed. The flow model in the form of the Partial Differential Equations (PDEs) is transformed into a system of non-linear and coupled Ordinary Differential Equations (ODEs) by implementing appropriate similarity transformations. The resulting ordinary differential equations are solved numerically by the shooting technique with Adams-Moulton Method of fourth order. The numerical solution obtained for the velocity and temperature profiles has been presented through graphs for different choice of the physical parameters. The magnetic field is found to have a direct relation with the temperature profile and an inverse with the velocity profile. Increasing the thermal radiation, the temperature tends to rise.


Author(s):  
N. Ataalla ◽  
A.M. Yousef

Pregnant women should receive appropriate care during radiation examination which requires increased awareness of the effect of radiation and its associated risks. The aim of the study was to assess awareness of radiation risks on pregnant women during radiological examination among healthcare professionals and women who are pregnant or of childbearing age. A total of 225 individuals from different professional groups (nurses, medical radiographers, radiologists) and a total of 75 women who were pregnant or in childbearing age responded to a questionnaire-based cross-sectional study. The study was conducted in Riyadh and Al-Kharj hospitals in Saudi Arabia. Data were analyzed by T-test and ANOVAs-test to compare the level of knowledge among participants; the level of significance was set at p ≤ 0.05. The results showed that the healthcare workers who had attended training programs had an increased level of knowledge regarding radiation effects among pregnant women as compared to those who had not attended training programs (p < 0.05). The study showed a non-significant difference in awareness level for healthcare professionals regarding their job experience (p > 0.05). There was a lack of nurses’ awareness regarding X-ray or radiation dosage and its effect on pregnant women and fetuses. On-going training and education regarding radiation protection is recommended.


2018 ◽  
Vol 7 (2) ◽  
pp. 91-101 ◽  
Author(s):  
M. Archana ◽  
B. J. Gireesha ◽  
B. C. Prasannakumara ◽  
R.S.R. Gorla

Abstract The heat and mass transfer of rotating Casson nanofluid flow is incorporated in the present study. Influence of magnetic field, nonlinear thermal radiation, viscous dissipation and Joule heating effects are taken into the account. A set of nonlinear ordinary differential equations are obtained from the governing partial differential equations with the aid of suitable similarity transformations. The resultant equations are solved for the numerical solution using Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique. The impact of several existing physical parameter on velocity, temperature and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that, velocity component decreases and temperature component increases for rotating parameter.


Sign in / Sign up

Export Citation Format

Share Document