scholarly journals A Distributed Smooth Time-Varying Feedback Control Law for Multiple Nonholonomic Mobile Robots to Make Group Formations

2003 ◽  
Vol 39 (12) ◽  
pp. 1108-1116 ◽  
Author(s):  
Hiroaki YAMAGUCHI
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Chen ◽  
Shen Xu ◽  
Lulu Chu ◽  
Fei Tong ◽  
Lei Chen

In this paper, finite-time tracking problem of nonholonomic mobile robots for a moving target is considered. First of all, polar coordinates are used to characterize the distance and azimuth between the moving target and the robot. Then, based on the distance and azimuth transported from the sensor installed on the robot, a finite-time tracking control law is designed for the nonholonomic mobile robot by the switching control method. Rigorous proof shows that the tracking error converges to zero in a finite time. Numerical simulation demonstrates the effectiveness of the proposed control method.


2014 ◽  
Vol 26 (12) ◽  
pp. 2669-2691 ◽  
Author(s):  
Terence D. Sanger

Human movement differs from robot control because of its flexibility in unknown environments, robustness to perturbation, and tolerance of unknown parameters and unpredictable variability. We propose a new theory, risk-aware control, in which movement is governed by estimates of risk based on uncertainty about the current state and knowledge of the cost of errors. We demonstrate the existence of a feedback control law that implements risk-aware control and show that this control law can be directly implemented by populations of spiking neurons. Simulated examples of risk-aware control for time-varying cost functions as well as learning of unknown dynamics in a stochastic risky environment are provided.


2020 ◽  
pp. 107754632092759
Author(s):  
Xi Wang ◽  
Baolin Hou

To solve precise and fast position control of a robotic manipulator with base vibration and load uncertainty, a continuous time-varying feedback control method based on the implicit Lyapunov function is studied. This method is proportional–derivative-like in the form of control law, but its proportional and differential coefficients depend on the system Lyapunov function, which are differentiable functions of system error variables. In the motion process of the robotic manipulator, the system performance is influenced by three main nonlinear factors: system friction, balance torque, and base vibration. As the former two factors are available to be modeled and identified through experiments, compensation of the two terms is added to the proposed control law to reduce the effects of system nonlinearities to a certain extent. Experimental results show that the proposed control strategy is robust to base vibration and load uncertainty. Besides, the compensation of system friction and balance torque can shorten the positioning time by 27.3%, from 1.32 s to 0.96 s. Meanwhile, the positioning precision is guaranteed, which verifies the effectiveness of the proposed control scheme.


2005 ◽  
Vol 46 (4) ◽  
pp. 471-484 ◽  
Author(s):  
Honglei Xu ◽  
Xinzhi Liu ◽  
Kok Lay Teo

AbstractIn this paper, we study the problem of robust H∞ stabilisation with definite attenuance for a class of impulsive switched systems with time-varying uncertainty. A norm-bounded uncertainty is assumed to appear in all the matrices of the state model. An LMI-based method for robust· H∞ stabilisation with definite attenuance via a state feedback control law is developed. A simulation example is presented to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document