scholarly journals SCALE-MODEL RELATIONSHIP OF BEACH PROFILE

1984 ◽  
Vol 1 (19) ◽  
pp. 95 ◽  
Author(s):  
Masahiro Ito ◽  
Yoshito Tsuchiya

This paper presents a scale-model relationship for the similarity between large and small scale-models in two-dimensional equilibrium beach profiles. Taking large scale-models using large scale equipment as prototypes, the experimental scale of a medium-sized model was gradually varied keeping the grain size ratio of model to prototype constant. A similarity-comparison between large and small scale beach profiles is made by considering the degree of experimental errors. Judgement results are graphically shown, and a scale-model relationship is proposed. It is found that the scale-model relationship proposed agrees with the ones derived from the empirical formulae expressing the properties of beach profiles. Additionally, the applicability of this scale-model relationship to the reproduction test of natural beaches is examined.

2010 ◽  
Vol 133-134 ◽  
pp. 497-502 ◽  
Author(s):  
Alvaro Quinonez ◽  
Jennifer Zessin ◽  
Aissata Nutzel ◽  
John Ochsendorf

Experiments may be used to verify numerical and analytical results, but large-scale model testing is associated with high costs and lengthy set-up times. In contrast, small-scale model testing is inexpensive, non-invasive, and easy to replicate over several trials. This paper proposes a new method of masonry model generation using three-dimensional printing technology. Small-scale models are created as an assemblage of individual blocks representing the original structure’s geometry and stereotomy. Two model domes are tested to collapse due to outward support displacements, and experimental data from these tests is compared with analytical predictions. Results of these experiments provide a strong understanding of the mechanics of actual masonry structures and can be used to demonstrate the structural capacity of masonry structures with extensive cracking. Challenges for this work, such as imperfections in the model geometry and construction problems, are also addressed. This experimental method can provide a low-cost alternative for the collapse analysis of complex masonry structures, the safety of which depends primarily on stability rather than material strength.


2009 ◽  
Vol 137 (12) ◽  
pp. 4307-4324 ◽  
Author(s):  
Yulong Xing ◽  
Andrew J. Majda ◽  
Wojciech W. Grabowski

Abstract Superparameterization (SP) is a large-scale modeling system with explicit representation of small-scale and mesoscale processes provided by a cloud-resolving model (CRM) embedded in each column of a large-scale model. New efficient sparse space–time algorithms based on the original idea of SP are presented. The large-scale dynamics are unchanged, but the small-scale model is solved in a reduced spatially periodic domain to save the computation cost following a similar idea applied by one of the authors for aquaplanet simulations. In addition, the time interval of integration of the small-scale model is reduced systematically for the same purpose, which results in a different coupling mechanism between the small- and large-scale models. The new algorithms have been applied to a stringent two-dimensional test suite involving moist convection interacting with shear with regimes ranging from strong free and forced squall lines to dying scattered convection as the shear strength varies. The numerical results are compared with the CRM and original SP. It is shown here that for all of the regimes of propagation and dying scattered convection, the large-scale variables such as horizontal velocity and specific humidity are captured in a statistically accurate way (pattern correlations above 0.75) based on space–time reduction of the small-scale models by a factor of ⅓; thus, the new efficient algorithms for SP result in a gain of roughly a factor of 10 in efficiency while retaining a statistical accuracy on the large-scale variables. Even the models with ⅙ reduction in space–time with a gain of 36 in efficiency are able to distinguish between propagating squall lines and dying scattered convection with a pattern correlation above 0.6 for horizontal velocity and specific humidity. These encouraging results suggest the possibility of using these efficient new algorithms for limited-area mesoscale ensemble forecasting.


1977 ◽  
Vol 1977 (1) ◽  
pp. 341-346
Author(s):  
James H. Getman

ABSTRACT Presently, the effective removal of oil spills is limited to current speeds of less than one to two knots. To be able to effectively recover spilled oil in areas of higher current speeds, the Coast Guard has a development effort underway for obtaining such a device. The first stage of the development program included a competitive evaluation of small scale models of seven different fast current oil recovery concepts. The two most promising concepts have now been developed into large scale models. These two devices plus a third device which evolved from a parallel state-of-the-art evaluation program were tested during the summer of 1976 at the Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tank (OHMSETT). The Shell ZRV large scale model performed well in fast-current velocities in both calm seas and in a wave train. The Seaward Streaming Fiber Recovery Device performed well in fast currents in calm conditions but performed poorly in waves. The French Cyclonet 050 provided fair performance in medium currents and in calm conditions but gave poor performance when waves were present.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


2007 ◽  
Vol 46 (7) ◽  
pp. 1067-1079 ◽  
Author(s):  
M. Kanda ◽  
M. Kanega ◽  
T. Kawai ◽  
R. Moriwaki ◽  
H. Sugawara

Abstract Urban climate experimental results from the Comprehensive Outdoor Scale Model (COSMO) were used to estimate roughness lengths for momentum and heat. Two different physical scale models were used to investigate the scale dependence of the roughness lengths; the large scale model included an aligned array of 1.5-m concrete cubes, and the small scale model had a geometrically similar array of 0.15-m concrete cubes. Only turbulent data from the unstable boundary layers were considered. The roughness length for momentum relative to the obstacle height was dependent on wind direction, but the scale dependence was not evident. Estimated values agreed well with a conventional morphometric relationship. The logarithm of the roughness length for heat relative to the obstacle height depended on the scale but was insensitive to wind direction. COSMO data were used successfully to regress a theoretical relationship between κB−1, the logarithmic ratio of roughness length for momentum to heat, and Re*, the roughness Reynolds number. Values of κB−1 associated with Re* for three different urban sites from previous field experiments were intercompared. A surprising finding was that, even though surface geometry differed from site to site, the regressed function agreed with data from the three urban sites as well as with the COSMO data. Field data showed that κB−1 values decreased as the areal fraction of vegetation increased. The observed dependency of the bulk transfer coefficient on atmospheric stability in the COSMO data could be reproduced using the regressed function of Re* and κB−1, together with a Monin–Obukhov similarity framework.


2012 ◽  
Vol 8 (S294) ◽  
pp. 361-363
Author(s):  
A. V. Getling ◽  
O. S. Mazhorova ◽  
O. V. Shcheritsa

AbstractConvection is simulated numerically based on two-dimensional Boussinesq equations for a fluid layer with a specially chosen stratification such that the convective instability is much stronger in a thin subsurface sublayer than in the remaining part of the layer. The developing convective flow has a small-scale component superposed onto a basic large-scale roll flow.


2015 ◽  
Vol 2 (2) ◽  
pp. 513-536 ◽  
Author(s):  
I. Grooms ◽  
Y. Lee

Abstract. Superparameterization (SP) is a multiscale computational approach wherein a large scale atmosphere or ocean model is coupled to an array of simulations of small scale dynamics on periodic domains embedded into the computational grid of the large scale model. SP has been successfully developed in global atmosphere and climate models, and is a promising approach for new applications. The authors develop a 3D-Var variational data assimilation framework for use with SP; the relatively low cost and simplicity of 3D-Var in comparison with ensemble approaches makes it a natural fit for relatively expensive multiscale SP models. To demonstrate the assimilation framework in a simple model, the authors develop a new system of ordinary differential equations similar to the two-scale Lorenz-'96 model. The system has one set of variables denoted {Yi}, with large and small scale parts, and the SP approximation to the system is straightforward. With the new assimilation framework the SP model approximates the large scale dynamics of the true system accurately.


2019 ◽  
Vol 867 ◽  
pp. 146-194 ◽  
Author(s):  
G. L. Richard ◽  
A. Duran ◽  
B. Fabrèges

We derive a two-dimensional depth-averaged model for coastal waves with both dispersive and dissipative effects. A tensor quantity called enstrophy models the subdepth large-scale turbulence, including its anisotropic character, and is a source of vorticity of the average flow. The small-scale turbulence is modelled through a turbulent-viscosity hypothesis. This fully nonlinear model has equivalent dispersive properties to the Green–Naghdi equations and is treated, both for the optimization of these properties and for the numerical resolution, with the same techniques which are used for the Green–Naghdi system. The model equations are solved with a discontinuous Galerkin discretization based on a decoupling between the hyperbolic and non-hydrostatic parts of the system. The predictions of the model are compared to experimental data in a wide range of physical conditions. Simulations were run in one-dimensional and two-dimensional cases, including run-up and run-down on beaches, non-trivial topographies, wave trains over a bar or propagation around an island or a reef. A very good agreement is reached in every cases, validating the predictive empirical laws for the parameters of the model. These comparisons confirm the efficiency of the present strategy, highlighting the enstrophy as a robust and reliable tool to describe wave breaking even in a two-dimensional context. Compared with existing depth-averaged models, this approach is numerically robust and adds more physical effects without significant increase in numerical complexity.


2000 ◽  
Vol 407 ◽  
pp. 105-122 ◽  
Author(s):  
JACQUES VANNESTE

The effect of a small-scale topography on large-scale, small-amplitude oceanic motion is analysed using a two-dimensional quasi-geostrophic model that includes free-surface and β effects, Ekman friction and viscous (or turbulent) dissipation. The topography is two-dimensional and periodic; its slope is assumed to be much larger than the ratio of the ocean depth to the Earth's radius. An averaged equation of motion is derived for flows with spatial scales that are much larger than the scale of the topography and either (i) much larger than or (ii) comparable to the radius of deformation. Compared to the standard quasi-geostrophic equation, this averaged equation contains an additional dissipative term that results from the interaction between topography and dissipation. In case (i) this term simply represents an additional Ekman friction, whereas in case (ii) it is given by an integral over the history of the large-scale flow. The properties of the additional term are studied in detail. For case (i) in particular, numerical calculations are employed to analyse the dependence of the additional Ekman friction on the structure of the topography and on the strength of the original dissipation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document