scholarly journals MEASUREMENTS OF SURFACE KINEMATICS AND TEMPERATURE IN THE SURF AND SWASH ZONES USING INFRARED IMAGE VELOCIMETRY

2012 ◽  
Vol 1 (33) ◽  
pp. 55
Author(s):  
Zhi-Cheng Huang ◽  
Kao-Shu Hwang ◽  
Luc Lenain ◽  
W. Kendall Melville ◽  
Hwung-Hwang Hwung

High intensity air bubbles generated in the surf zone and the thinning of swash flow make velocity measurements particularly challenging in coastal areas. These facts have led the need for a new measurement technique to quantify the surf and swash flow dynamics. Here, we tested infrared image techniques to measure the surface temperature and then to derive the velocity fields using cross-correlation algorithm for large-scale solitary waves breaking in the surf and swash zones. From the comparison with unspiked electromagnetic current meter (EMCM) data and previous validation, it is suggested that the infrared image velocimetry (IRIV) is satisfactory to quantify the surface turbulent flow in the surf and swash zones. The data obtained in the experiment provides a new description of surface thermal structure and kinematics for solitary breaking waves. Two-dimensional organized streaks of temperature structures are evident on the water surface behind the head of rebounding jet. Wavenumber spectrum analysis shows that the directionality of these thermal signatures evolves with time. Evolution of vorticity on the water surface during the run-up and run-down process of the solitary broken wave is discussed.

2019 ◽  
Vol 867 ◽  
pp. 146-194 ◽  
Author(s):  
G. L. Richard ◽  
A. Duran ◽  
B. Fabrèges

We derive a two-dimensional depth-averaged model for coastal waves with both dispersive and dissipative effects. A tensor quantity called enstrophy models the subdepth large-scale turbulence, including its anisotropic character, and is a source of vorticity of the average flow. The small-scale turbulence is modelled through a turbulent-viscosity hypothesis. This fully nonlinear model has equivalent dispersive properties to the Green–Naghdi equations and is treated, both for the optimization of these properties and for the numerical resolution, with the same techniques which are used for the Green–Naghdi system. The model equations are solved with a discontinuous Galerkin discretization based on a decoupling between the hyperbolic and non-hydrostatic parts of the system. The predictions of the model are compared to experimental data in a wide range of physical conditions. Simulations were run in one-dimensional and two-dimensional cases, including run-up and run-down on beaches, non-trivial topographies, wave trains over a bar or propagation around an island or a reef. A very good agreement is reached in every cases, validating the predictive empirical laws for the parameters of the model. These comparisons confirm the efficiency of the present strategy, highlighting the enstrophy as a robust and reliable tool to describe wave breaking even in a two-dimensional context. Compared with existing depth-averaged models, this approach is numerically robust and adds more physical effects without significant increase in numerical complexity.


2019 ◽  
Vol 11 (19) ◽  
pp. 2317 ◽  
Author(s):  
Paul Kinzel ◽  
Carl Legleiter

This paper describes a non-contact methodology for computing river discharge based on data collected from small Unmanned Aerial Systems (sUAS). The approach is complete in that both surface velocity and channel geometry are measured directly under field conditions. The technique does not require introducing artificial tracer particles for computing surface velocity, nor does it rely upon the presence of naturally occurring floating material. Moreover, no prior knowledge of river bathymetry is necessary. Due to the weight of the sensors and limited payload capacities of the commercially available sUAS used in the study, two sUAS were required. The first sUAS included mid-wave thermal infrared and visible cameras. For the field evaluation described herein, a thermal image time series was acquired and a particle image velocimetry (PIV) algorithm used to track the motion of structures expressed at the water surface as small differences in temperature. The ability to detect these thermal features was significant because the water surface lacked floating material (e.g., foam, debris) that could have been detected with a visible camera and used to perform conventional Large-Scale Particle Image Velocimetry (LSPIV). The second sUAS was devoted to measuring bathymetry with a novel scanning polarizing lidar. We collected field measurements along two channel transects to assess the accuracy of the remotely sensed velocities, depths, and discharges. Thermal PIV provided velocities that agreed closely ( R 2 = 0.82 and 0.64) with in situ velocity measurements from an acoustic Doppler current profiler (ADCP). Depths inferred from the lidar closely matched those surveyed by wading in the shallower of the two cross sections ( R 2 = 0.95), but the agreement was not as strong for the transect with greater depths ( R 2 = 0.61). Incremental discharges computed with the remotely sensed velocities and depths were greater than corresponding ADCP measurements by 22% at the first cross section and <1% at the second.


Author(s):  
Brecht Devolder ◽  
Peter Troch ◽  
Pieter Rauwoens

The surf zone dynamics are governed by important processes such as turbulence generation , nearshore sediment transport , wave run-up and wave overtopping at a coastal structure. During field observations , it is very challenging to measure and quantify wave breaking turbulence . Complementary to experimental laboratory studies in a more controlled environment , numerical simulations are highly suitable to understand and quantify surf zone processes more accurately. In this study, wave propagation and wave breaking over a fixed barred beach profile is investigated using a two­ phase Navier-Stokes flow solver. We show that accurate predictions of the turbulent two-phase flow field require special attention regarding turbulence modelling. The numerical wave flume is implemented in the open­ source OpenFOAM library. The computed results (surface elevations , velocity profiles and turbulence levels) are compared against experimental measurements in a wave flume (van der A et al., 2017) .


1976 ◽  
Vol 1 (15) ◽  
pp. 38 ◽  
Author(s):  
Joseph W. Maresca ◽  
Erwin Seibel

We conducted a study to determine the feasibility of shore-based, oblique photographic monitoring of breaking waves, water levels, and currents within the surf zone. The purpose of this paper is to describe a new method of oblique single-image and stereoscopic-image analysis, the potential errors, and the types of measurements that can be made in the surf zone. Examples of application are presented to demonstrate the technique. Sophisticated photographic equipment is not required to collect, analyze, and interpret the data. The analysis and error discussions are directed toward the problems encountered using common equipment. Vertical images from aircraft, helicopters, and balloons have been used in the past to study shoreline changes, directional ocean-wave spectra,8 and longshore currents.3 Oblique images taken from the bridge of a ship have been successfully used to measure whitecap coverage under different wind speeds.4 Terrestrial oblique images have been used to study longshore currents,5 ice-ridge formation and breakup,6'7 and beach changes .8 Oblique images, taken with a 35-mm single-lens reflex camera from an elevated point such as a bluff, are particularly suitable for the measurement of breaking waves, water level, beach run-up, and current in the surf zone under storm conditions. In contrast to other techniques of monitoring the surf zone, the photographic technique described in this paper is simple to install, reliable, accurate, and inexpensive. It can be used in all weather conditions, and the analysis of the images is simple. Both stereoscopic and single oblique images can be analyzed, depending on the specific needs and existing environmental conditions. Since the scale of an oblique photograph changes with increasing distance from the camera, the technique is limited in range to about 250 m for a cliff approximately 8 m above the mean water level. Accuracies to within 1% in the horizontal plane and better than 10% in the vertical plane are achievable at this distance.


Author(s):  
Dominic Van der A ◽  
Joep Van der Zanden ◽  
Ming Li ◽  
James Cooper ◽  
Simon Clark ◽  
...  

Multiphase CFD models recently have proved promising in modelling cross‐shore sediment transport and morphodynamics (Jacobsen et al 2014). However, modelling breaking wave turbulence remains a major challenge for these models, because it occurs at very different spatial and temporal length scales and involves the interaction between surface generated turbulence and turbulence generated in the bottom boundary layer. To an extent these challenges arise from a lack of appropriate experimental data, since most previous experimental studies involved breaking waves at small-scale, and have not permitted investigation of the turbulent boundary layer processes. Moreover, most existing studies have concentrated on regular waves, thereby excluding the flow and turbulence dynamics occurring at wave group time-scales under irregular waves within the surf zone. These limitations motivated a new experiment in the large-scale CIEM wave flume in Barcelona involving regular and irregular waves. The experiment was conducted in May-July 2017 within the HYDRALAB+ Transnational Access project HYBRID.


2015 ◽  
Vol 779 ◽  
pp. 556-597 ◽  
Author(s):  
Nimish Pujara ◽  
Philip L.-F. Liu ◽  
Harry Yeh

The swash of solitary waves on a plane beach is studied using large-scale experiments. Ten wave cases are examined which range from non-breaking waves to plunging breakers. The focus of this study is on the influence of breaker type on flow evolution, spatiotemporal variations of bed shear stresses and run-up. Measurements are made of the local water depths, flow velocities and bed shear stresses (using a shear plate sensor) at various locations in the swash zone. The bed shear stress is significant near the tip of the swash during uprush and in the shallow flow during the later stages of downrush. In between, the flow evolution is dominated by gravity and follows an explicit solution to the nonlinear shallow water equations, i.e. the flow due to a dam break on a slope. The controlling scale of the flow evolution is the initial velocity of the shoreline immediately following waveform collapse, which can be predicted by measurements of wave height prior to breaking, but also shows an additional dependence on breaker type. The maximum onshore-directed bed shear stress increases significantly onshore of the stillwater shoreline for non-breaking waves and onshore of the waveform collapse point for breaking waves. A new normalization for the bed shear stress which uses the initial shoreline velocity is presented. Under this normalization, the variation of the maximum magnitudes of the bed shear stress with distance along the beach, which is normalized using the run-up, follows the same trend for different breaker types. For the uprush, the maximum dimensionless bed shear stress is approximately 0.01, whereas for the downrush, it is approximately 0.002.


1988 ◽  
Vol 1 (21) ◽  
pp. 10
Author(s):  
Mitsuo Takezawa ◽  
Masaru Mizuguchi ◽  
Shintaro Hotta ◽  
Susumu Kubota

The swash oscillation, waves and water particle velocity in the surf zone were measured by using 16 mm memo-motion cameras and electromagnetic current meters. It was inferred that incident waves form two-dimensional standing waves with the anti-node in the swash slope. Separation of the incident waves and reflected waves was attempted with good results using small amplitude long wave theory. Reflection coefficient of individual waves ranged between 0.3 and 1.0. The joint distribution of wave heights and periods in the swash oscillation exhibited different distribution from that in and outside the surf zone. This indicates that simple application of wave to wave transformation model fails in the swash zone.


Sign in / Sign up

Export Citation Format

Share Document