scholarly journals STABILITY OF INTERLOCKED PATTERN PLACED BLOCK REVETMENTS

2012 ◽  
Vol 1 (33) ◽  
pp. 46 ◽  
Author(s):  
Fabian Gier ◽  
Holger Schüttrumpf ◽  
Jens Mönnich ◽  
Jentsje Van der Meer ◽  
Matthias Kudella ◽  
...  

Revetments protect the shorelines of coasts, estuaries and rivers against wind waves, ship waves, currents and ice attacks. The resistance of revetments basically depends on the properties of the cover layer. In the case of an interlocked pattern placed revetment the resistance essentially depends on the weight of the individual blocks, the friction forces and the interlocking force. In this study, extensive large scale model tests have been performed to assess the hydraulic stability of interlocked pattern placed revetments. The study shows test results due to deformations, wave loading and pull-out tests. Overall, the experimental results show a significant increase in the structural stability of the revetment against wave attack due to the interlocking system compared to traditional revetment elements.

2017 ◽  
Vol 54 (12) ◽  
pp. 1728-1738 ◽  
Author(s):  
Qiong Wang ◽  
Xinyu Ye ◽  
Shanyong Wang ◽  
Scott William Sloan ◽  
Daichao Sheng

An innovative compaction-grouted soil nail was designed by injecting grout into a special latex balloon (grouting bag) to avoid bleeding and penetration of grout into the surrounding soil. A series of large-scale model tests was performed to study the surrounding soil responses due to grouting and the subsequent pull-out resistance of the soil nail. The experimental results show that grouting pressure plays an important role in the enhancement of the density and (or) strength of the surrounding soil. In addition, during the pull-out process, the compaction-grouted soil nail exhibits a strain-hardening behaviour without a yield point. This is a significant advantage of this new soil nail, indicating that it can enable soil masses to remain stable against a relatively large deformation before ultimate failure. The main factors behind the improvement of the pull-out resistance of the new soil nail are, first, the compaction–densification of the soil near the grouting bag due to grouting, resulting in the enhancement of the shear strength of the soil, and, second, the enlargement of the grouting bag, causing the increase of the interface shear and end resistance to the pull-out of the soil nail.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Moussa Leblouba ◽  
Salah Al Toubat ◽  
Muhammad Ekhlasur Rahman ◽  
Omer Mugheida

Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.


2012 ◽  
Vol 1 (33) ◽  
pp. 49
Author(s):  
Jose Alberto Gonzalez-Escriva ◽  
Josep Ramon MEDINA

A new maritime vertical structure was designed to improve the antireflective performance for wave reflection of wind waves and oscillations associated with intense storms, resonance waves in port basins, etc. Multiple unit chambers formed with long cell circuits (Medina et al., 2010) are responsible for the low frequency wave absorption that was studied through large-scale model testing.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


1984 ◽  
Vol 106 (1) ◽  
pp. 222-228 ◽  
Author(s):  
M. L. Marziale ◽  
R. E. Mayle

An experimental investigation was conducted to examine the effect of a periodic variation in the angle of attack on heat transfer at the leading edge of a gas turbine blade. A circular cylinder was used as a large-scale model of the leading edge region. The cylinder was placed in a wind tunnel and was oscillated rotationally about its axis. The incident flow Reynolds number and the Strouhal number of oscillation were chosen to model an actual turbine condition. Incident turbulence levels up to 4.9 percent were produced by grids placed upstream of the cylinder. The transfer rate was measured using a mass transfer technique and heat transfer rates inferred from the results. A direct comparison of the unsteady and steady results indicate that the effect is dependent on the Strouhal number, turbulence level, and the turbulence length scale, but that the largest observed effect was only a 10 percent augmentation at the nominal stagnation position.


1989 ◽  
Author(s):  
R. DE GAAIJ ◽  
E. VAN RIETBERGEN ◽  
M. SLEGERS

Sign in / Sign up

Export Citation Format

Share Document