scholarly journals COASTAL FLOODING, WAVE OVERTOPPING AND BEACH GROUNDWATER INTERACTIONS

Author(s):  
Timu Gallien ◽  
Marie-Pierre Delisle

Coastal flooding is a significant humanitarian and socioeconomic hazard (e.g., Nicholls, 2010). Global mean sea levels are expected to rise over the coming century and mean higher high water (MHHW) and mean high water (MHW), peak levels that drive coastal flooding, show upward trends in many locations (Mawdsley et al., 2015). Significant coastal flooding will occur by 2050 (e.g., Tebaldi et al., 2012; Sweet and Park, 2014). Wave overtopping is primary driver of coastal flooding. Low-lying urbanized sand spits, backed by an estuary are particularly vulnerable to sea level rise. Recent field observations suggest distinct feedbacks between wave overtopping, beach groundwater levels and backshore vulnerability.

2020 ◽  
Author(s):  
Peter Robins ◽  
Lisa Harrison ◽  
Mariam Elnahrawi ◽  
Matt Lewis ◽  
Tom Coulthard ◽  
...  

<p>Coastal flooding worldwide causes the vast majority of natural disasters; for the UK costing £2.2 billion/year. Fluvial and surge-tide extremes can occur synchronously resulting in combination flooding hazards in estuaries, intensifying the flood risk beyond fluvial-only or surge-only events. Worse, this flood risk has the potential to increase further in the future as the frequency and/or intensity of these drivers change, combined with projected sea-level rise. Yet, the sensitivity of contrasting estuaries to combination and compound flooding hazards at sub-daily scales – now and in the future – is unclear. Here, we investigate the dependence between fluvial and surge interactions at sub-daily scales for contrasting catchment and estuary types (Humber vs. Dyfi, UK), using 50+ years of data: 15-min fluvial flows and hourly sea levels. Additionally, we simulate intra-estuary (<50 m resolution) sensitivities to combination flooding hazards based on: (1) realistic extreme events (worst-on-record); (2) realistic events with shifted timings of the drivers to maximise flooding; and (3) modified drivers representing projected climate change.</p><p>For well-documented flooding events, we show significant correlation between skew surge and peak fluvial flow, for the Dyfi (small catchment and estuary with a fast fluvial response on the west coast of Britain), with a higher dependence during autumn/winter months. In contrast, we show no dependence for the Humber (large catchment and estuary with a slow fluvial response on the east coast of Britain). Cross-correlation results, however, did show correlation with a time lag (~10 hours). For the Dyfi, flood extent was sensitive to the relative timing of the fluvial and surge-tide drivers. In contrast, the relative timing of these drivers did not affect flooding in the Humber. However, extreme fluvial flows in the Humber actually reduced water levels in the outer estuary, compared with a surge-only event. Projected future changes in these drivers by 2100 are likely to increase combination flooding hazards: sea-level rise scenarios predicted substantial and widespread flooding in both estuaries. However, similar increases in storm surge resulted in a greater seawater influx, altering the character of the flooding. Projected changes in fluvial volumes were the weakest driver of estuarine flooding. On the west coast of Britain containing many small/steep catchments, combination flooding hazards from fluvial and surges extremes occurring together is likely. Moreover, high-resolution data and hydrodynamic modelling are necessary to resolve the impact and inform flood mitigation methodology.</p>


2021 ◽  
Author(s):  
SA Stephens ◽  
RG Bell ◽  
Judith Lawrence

© 2017 by the authors. Coastal hazards result from erosion of the shore, or flooding of low-elevation land when storm surges combine with high tides and/or large waves. Future sea-level rise will greatly increase the frequency and depth of coastal flooding and will exacerbate erosion and raise groundwater levels, forcing vulnerable communities to adapt. Communities, local councils and infrastructure operators will need to decide when and how to adapt. The process of decision making using adaptive pathways approaches, is now being applied internationally to plan for adaptation over time by anticipating tipping points in the future when planning objectives are no longer being met. This process requires risk and uncertainty considerations to be transparent in the scenarios used in adaptive planning. We outline a framework for uncertainty identification and management within coastal hazard assessments. The framework provides a logical flow from the land use situation, to the related level of uncertainty as determined by the situation, to which hazard scenarios to model, to the complexity level of hazard modeling required, and to the possible decision type. Traditionally, coastal flood hazard maps show inundated areas only. We present enhanced maps of flooding depth and frequency which clearly show the degree of hazard exposure, where that exposure occurs, and how the exposure changes with sea-level rise, to better inform adaptive planning processes. The new uncertainty framework and mapping techniques can better inform identification of trigger points for adaptation pathways planning and their expected time range, compared to traditional coastal flooding hazard assessments.


2020 ◽  
Author(s):  
Aslak Grinsted ◽  
Jens Hesselbjerg Christensen

<p>We are warming our planet, and sea levels are rising as oceans expand and ice on land melts. This instigates a threat to coastal communities and ecosystems, and there is an urgent need for sea level predictions encompassing all known uncertainties to plan for it. Comprehensive assessments have concluded that sea level is unlikely to rise by more than about 1.1m this century but with further increase beyond 2100. However, some studies conclude that considerably greater sea level rise could be realised and an expert elicitation assign a substantially higher likelihood to this scenario. Here, we show that models used to assess future sea level in AR5 & SROCC have a lower sea level sensitivity than inferred from observations. By analyzing mean rate of change in sea level (not sea level itself), we identify a near linear relationship with global mean surface temperature in both model projections, and in observations. The model projections fall below expectations from the more recent observational period. This comparison suggests that the likely range of sea level projections in IPCC AR5 and SROCC would be too low.</p>


2021 ◽  
Author(s):  
SA Stephens ◽  
RG Bell ◽  
Judith Lawrence

© 2017 by the authors. Coastal hazards result from erosion of the shore, or flooding of low-elevation land when storm surges combine with high tides and/or large waves. Future sea-level rise will greatly increase the frequency and depth of coastal flooding and will exacerbate erosion and raise groundwater levels, forcing vulnerable communities to adapt. Communities, local councils and infrastructure operators will need to decide when and how to adapt. The process of decision making using adaptive pathways approaches, is now being applied internationally to plan for adaptation over time by anticipating tipping points in the future when planning objectives are no longer being met. This process requires risk and uncertainty considerations to be transparent in the scenarios used in adaptive planning. We outline a framework for uncertainty identification and management within coastal hazard assessments. The framework provides a logical flow from the land use situation, to the related level of uncertainty as determined by the situation, to which hazard scenarios to model, to the complexity level of hazard modeling required, and to the possible decision type. Traditionally, coastal flood hazard maps show inundated areas only. We present enhanced maps of flooding depth and frequency which clearly show the degree of hazard exposure, where that exposure occurs, and how the exposure changes with sea-level rise, to better inform adaptive planning processes. The new uncertainty framework and mapping techniques can better inform identification of trigger points for adaptation pathways planning and their expected time range, compared to traditional coastal flooding hazard assessments.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2167
Author(s):  
Mohamed Jalal EL Hamidi ◽  
Abdelkader Larabi ◽  
Mohamed Faouzi

Many coastal aquifers have experienced seawater intrusion (SWI) into fresh groundwater aquifers. The principal causes of SWI include over-pumping and events such as climate change (CC) and rising sea levels. In northern Morocco, the Rmel-Oulad Ogbane coastal aquifer (ROOCA) supplies high-quality groundwater for drinking water and agriculture. This favorable situation has led to increased pumping, resulting in environmental challenges such as dropping water table and SWI. Furthermore, the climate has resulted in less recharge, with an estimated annual precipitation of 602 mm and an average temperature of 18.5 °C. The goal of this study is to determine how CC, over-pumping, and sea-level rise (SLR) affect SWI. Computational groundwater and solute transport models are used to simulate the spatial and temporal evolution of hydraulic heads and groundwater solute concentrations. The calibration is based on steady and transient groundwater levels from 1962 to 2040. SWI simulations show that the NW sector of the coastal area would be polluted, with the toe reaching 5.2 km inland with a significant salinity (15–25 g/L). To protect the fresh water in the reservoir from SWI, enhanced groundwater development and management approaches for this aquifer are required, such as artificial recharge from surface water.


2020 ◽  
Vol 8 (10) ◽  
pp. 798
Author(s):  
Déborah Idier ◽  
Rodrigo Pedreros ◽  
Jérémy Rohmer ◽  
Gonéri Le Cozannet

Coastal floods are driven by many hydro-meteorological forcing factors, among which are mean sea levels, tides, atmospheric storm surges, and waves. Depending on these conditions, wave overtopping may occur and, in some cases, lead to a significant flood. In the present study, we investigate the effect of the stochastic character of waves on the flood itself using a phase-resolving wave model (SWASH). We focus on the macro-tidal site of Gâvres (France), consider two past flood events (both resulting from wave overtopping), and investigate how the effect of randomness of waves on the flood is changing with the forcing conditions and the time span (minutes to hours). We clearly show that the effect of waves’ stochasticity on the flood itself is far from being negligible and, especially on a short time scale (~15 min), generates an uncertainty comparable to that induced by the sea-level rise scenarios, as long as the still water level remains smaller than the critical level above which overflow occurs. This implies that lower confidence should be assigned to flood projection on sites where wave overtopping is the main process leading to flood.


2020 ◽  
Vol 12 (4) ◽  
pp. 1513 ◽  
Author(s):  
Ryan Paulik ◽  
Scott Stephens ◽  
Robert Bell ◽  
Sanjay Wadhwa ◽  
Ben Popovich

Coastal flooding from extreme sea levels will increase in frequency and magnitude as global climate change forces sea-level rise (SLR). Extreme sea-level events, rare in the recent past (i.e., once per century), are projected to occur at least once per year by 2050 along many of the world’s coastlines. Information showing where and how built-environment exposure increases with SLR, enables timely adaptation before damaging thresholds are reached. This study presents a first national-scale assessment of New Zealand’s built-environment exposure to future coastal flooding. We use an analytical risk model framework, “RiskScape”, to enumerate land, buildings and infrastructure exposed to a present and future 100-year extreme sea-level flood event (ESL100). We used high-resolution topographic data to assess incremental exposure to 0.1 m SLR increases. This approach detects variable rates in the potential magnitude and timing of future flood exposure in response to SLR over decadal scales. National built-land and asset exposure to ESL100 flooding doubles with less than 1 m SLR, indicating low-lying areas are likely to experience rapid exposure increases from modest increases in SLR expected within the next few decades. This highlights an urgent need for national and regional actions to anticipate and adaptively plan to reduce future socio-economic impacts arising from flood exposure to extreme sea-levels and SLR.


2019 ◽  
Vol 69 (1) ◽  
pp. 252 ◽  
Author(s):  
Ben S. Hague ◽  
Bradley F. Murphy ◽  
David A. Jones ◽  
Andy J. Taylor

This study presents the first assessment of the observed frequency of the impacts of high sea levels at locations along Australia’s northern coastline. We used a new methodology to systematically define impact-based thresholds for coastal tide gauges, utilising reports of coastal inundation from diverse sources. This method permitted a holistic consideration of impact-producing relative sea-level extremes without attributing physical causes. Impact-based thresholds may also provide a basis for the development of meaningful coastal flood warnings, forecasts and monitoring in the future. These services will become increasingly important as sea-level rise continues.The frequency of high sea-level events leading to coastal flooding increased at all 21 locations where impact-based thresholds were defined. Although we did not undertake a formal attribution, this increase was consistent with the well-documented rise in global sea levels. Notably, tide gauges from the south coast of Queensland showed that frequent coastal inundation was already occurring. At Brisbane and the Sunshine Coast, impact-based thresholds were being exceeded on average 21.6 and 24.3 h per year respectively. In the case of Brisbane, the number of hours of inundation annually has increased fourfold since 1977.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
A. Parker

AbstractContrary to what is claimed by reconstructions of the Global Mean Sea Level (GMSL) indicating accelerating sea level rates of rise over the twentieth-century, the actual measurements at the tide gauges show the sea levels have not risen nor accelerated that much. The most recent estimation by Hay et al [


Sign in / Sign up

Export Citation Format

Share Document