Evaluation of Vibration Characteristics of Caisson-Type Breakwater Using Impact Vibration Tests and Validation of Numerical Analysis Model

2013 ◽  
Vol 25 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Jin-Hak Yi ◽  
Woo-Sun Park ◽  
So-Young Lee ◽  
Jeong-Tae Kim ◽  
Choon-Gyo Seo
2013 ◽  
Vol 353-356 ◽  
pp. 692-695
Author(s):  
Chang Zhi Zhu ◽  
Quan Chen Gao

Based on an Engineering Example which was supported by the stepped soil-nail wall, a numerical analysis model was established by FLAC3D,and the process of the excavation and supporting was simulated, and the numerical results of the soil nails internal force and foundation pit deformation were obtained. The simulated result was consistent with the measured results. It shows that the method of FLAC3D numerical analysis can be used to the numerical analysis of foundation pit excavation and supporting, and it will provide the basis for the design and construction of practice project.


2011 ◽  
Vol 141 ◽  
pp. 43-48 ◽  
Author(s):  
Lin Yu Su ◽  
Yi Qiang Sun ◽  
Jian Ming Wen

In this paper, there are two kinds of impact vibration models: rigid impact model and elastic model. The dynamic responses of the two kinds of gear impact models are compared by experimental and numerical analysis. Firstly, establish the motion equations of the two models. Secondly, verify the correctness of the mechanical models through experimental analysis. Comparing the results of the numerical and experimental analysis, we can find that the intensity noise of gear vibration is reduced by the elastic boundary. Finally, the dynamic bifurcation characteristic of dimensionless excitations magnitude and backlash will be analyzed as well.


Author(s):  
Yener Usul ◽  
Mustafa Özçatalbaş

Abstract Increasing demand for usage of electronics intensely in narrow enclosures necessitates accurate thermal analyses to be performed. Conduction based FEM (Finite Element Method) is a common and practical way to examine the thermal behavior of an electronic system. First step to perform a numerical analysis for any system is to set up the correct analysis model. In this paper, a method for obtaining the coefficient of thermal conductivity and specific heat capacity of a PCB which has generally a complex composite layup structure composed of conductive layers, and dielectric layers. In the study, above mentioned properties are obtained performing a simple nondestructive experiment and a numerical analysis. In the method, a small portion of PCB is sandwiched from one side at certain pressure by jaws. A couple of linear temperature profiles are applied to the jaws successively. Unknown values are tuned in the analysis model until the results of FEM analysis and experiment match. The values for the coefficient of thermal conductivity and specific heat capacity which the experiment and numerical analysis results match can be said to be the actual values. From this point on, the PCB whose thermal properties are determined can be analyzed numerically for any desired geometry and boundary condition.


2012 ◽  
Vol 30 (4) ◽  
pp. 323-330 ◽  
Author(s):  
Shuhei KANEMARU ◽  
Tomoaki SASAKI ◽  
Toyoyuki SATO ◽  
Hisashi MISHIMA ◽  
Shinichi TASHIRO ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Bo Li ◽  
Cangqin Jia ◽  
Guihe Wang ◽  
Jun Ren ◽  
Gaofeng Lu ◽  
...  

Based on the Yongdingmen Station of Beijing Metro, the underwater excavation method for deep foundation pit was introduced. This study constructed a numerical analysis model to analyze the performance of surface settlement and lateral wall deflection in the process of underwater excavation. Results showed that this method was better to control the surface settlement and lateral wall deflection compared with other dewatering excavations. In detail, most of the surface settlement was caused during the dry excavation stage and dewatering excavation stage while the deflection caused by underwater excavation only accounted for about 10% of the total settlement. Besides, the maximum settlement occurred 0.25∼0.5 H e behind the retaining wall and the value was 0.04% H e . Similar to the result of the surface settlement, most of the lateral wall deflection had been completed before the underwater excavation, which only caused about 7% of the total deflection. The maximum wall deflection and its location were approximately 0.06% H e and 0.5 H e , respectively. Moreover, a series of 3D numerical analyses were studied on the design parameters of the underwater excavation method. This study can be used as a reference for general performance and structural design of foundation pits with underwater excavation.


2017 ◽  
Vol 31 (7) ◽  
pp. 3455-3464 ◽  
Author(s):  
Yongki Lee ◽  
Hunchul Jeong ◽  
Kyungbae Park ◽  
Yougjun Kim ◽  
Jungho Cho

Sign in / Sign up

Export Citation Format

Share Document