scholarly journals Performance Analysis on Depth and Straight Motion Control based on Control Surface Combinations for Supercavitating Underwater Vehicle

Author(s):  
Beomyeol Yu ◽  
Hyemin Mo ◽  
Seungkeun Kim ◽  
Jong-Hyon Hwang ◽  
Jeong-Hoon Park ◽  
...  

This study describes the depth and straight motion control performance depending on control surface combinations of a supercavitating underwater vehicle. When an underwater vehicle experiences supercavitation, friction resistance can be minimized, thus achieving the effect of super-high-speed driving. Six degrees of freedom modeling of the underwater vehicle are performed and the guidance and control loops are designed with not only a cavitator and an elevator, but also a rudder and a differential elevator to improve the stability of the roll and yaw axis. The control performance based on the combination of control surfaces is analyzed by the root-mean-square error for keeping depth and straight motion.

2013 ◽  
Vol 341-342 ◽  
pp. 906-912 ◽  
Author(s):  
Lei Zhang ◽  
Da Peng Jiang ◽  
Shu Ling Huang ◽  
Jin Xin Zhao

A switch function is presented to smooth control instructions and avoid system vibration during switch operating underwater vehicles with hybrid actuators. And a Modified S-plane Controller (MSC) is proposed by analyzing underwater vehicles dynamics and taking static force and coupling effects between the longitude velocity and other dimensions into account. Besides the advantages of S controller such as simple structure, MSC can solve the motion control of underwater vehicle at high speed which is difficult to control with S-plane controller. The stability of MSC is analyzed with Lyapunov function. Finally, MSC is applied to the motion control of an autonomous underwater vehicle controlled by rudders and thrusters. The feasibility of MSC is demonstrated by the results of velocity control, yaw control and depth control tests.


Author(s):  
Alireza Marzbanrad ◽  
Jalil Sharafi ◽  
Mohammad Eghtesad ◽  
Reza Kamali

This is report of design, construction and control of “Ariana-I”, an Underwater Remotely Operated Vehicle (ROV), built in Shiraz University Robotic Lab. This ROV is equipped with roll, pitch, heading, and depth sensors which provide sufficient feedback signals to give the system six degrees-of-freedom actuation. Although its center of gravity and center of buoyancy are positioned in such a way that Ariana-I ROV is self-stabilized, but the combinations of sensors and speed controlled drivers provide more stability of the system without the operator involvement. Video vision is provided for the system with Ethernet link to the operation unit. Control commands and sensor feedbacks are transferred on RS485 bus; video signal, water leakage alarm, and battery charging wires are provided on the same multi-core cable. While simple PI controllers would improve the pitch and roll stability of the system, various control schemes can be applied for heading to track different paths. The net weight of ROV out of water is about 130kg with frame dimensions of 130×100×65cm. Ariana-I ROV is designed such that it is possible to be equipped with different tools such as mechanical arms, thanks to microprocessor based control system provided with two directional high speed communication cables for on line vision and operation unit.


2010 ◽  
Vol 166-167 ◽  
pp. 457-462
Author(s):  
Dan Verdes ◽  
Radu Balan ◽  
Máthé Koppány

Parallel robots find many applications in human-systems interaction, medical robots, rehabilitation, exoskeletons, to name a few. These applications are characterized by many imperatives, with robust precision and dynamic workspace computation as the two ultimate ones. This paper presents kinematic analysis, workspace, design and control to 3 degrees of freedom (DOF) parallel robots. Parallel robots have received considerable attention from both researchers and manufacturers over the past years because of their potential for high stiffness, low inertia and high speed capability. Therefore, the 3 DOF translation parallel robots provide high potential and good prospects for their practical implementation in human-systems interaction.


2014 ◽  
Vol 684 ◽  
pp. 375-380
Author(s):  
Deng Sheng Zheng ◽  
Jian Chen ◽  
D.F. Tao ◽  
L. Lv ◽  
Gui Cheng Wang

Tooling system for high-speed machining is one of the key components of high-end CNC machine , its stability and reliability directly affects the quality and performance of the machine. Based on the finite element method, developing a 3D finite model of high-speed machining tool system, studying on the stability of the high Speed machining tool from the natural frequency by the method of modal analysis. Analysis the amount of the overhang and clamping of the tooling , different shank taper interference fit and under different speed conditions, which affects the natural frequency of high-speed machining tool system. Proposed to the approach of improving system stability, which also provides a theoretical basis for the development of new high-speed machining tool system.


2021 ◽  
Vol 5 (4) ◽  
pp. 130
Author(s):  
Rinku K. Mittal ◽  
Ramesh K. Singh

Catastrophic tool failure due to the low flexural stiffness of the micro-tool is a major concern for micromanufacturing industries. This issue can be addressed using high rotational speed, but the gyroscopic couple becomes prominent at high rotational speeds for micro-tools affecting the dynamic stability of the process. This study uses the multiple degrees of freedom (MDOF) model of the cutting tool to investigate the gyroscopic effect in machining. Hopf bifurcation theory is used to understand the long-term dynamic behavior of the system. A numerical scheme based on the linear multistep method is used to solve the time-periodic delay differential equations. The stability limits have been predicted as a function of the spindle speed. Higher tool deflections occur at higher spindle speeds. Stability lobe diagram shows the conservative limits at high rotational speeds for the MDOF model. The predicted stability limits show good agreement with the experimental limits, especially at high rotational speeds.


2019 ◽  
Vol 272 ◽  
pp. 01024 ◽  
Author(s):  
Feng YU ◽  
Jun XIE

Eight degrees of freedom vehicle model was established. Using the method of fuzzy control, the ABS control algorithm was designed based on slip ratio. Simulation analysis was done at speed of 15m/s, 20m/s, 25m/s under turning braking. The results show that the vehicle braking performance and vehicle stability at middle or low speed was improved by using the ABS controller, but qualitative analysis shows that phenomenon of vehicle instability was appeared at high-speed conditions. The turning braking stability under ABS controller was judged quantificationally by the stability judging formula. The results show that the requirements of stability control could not meet with only Anti-lock Braking System.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401775178
Author(s):  
Wu-Sung Yao

In general, eccentric gravity machinery is a rotation mechanism with eccentric pendulum mechanism, which can be used to convert continuously kinetic energy generated by gravity energy to electric energy. However, a stable rotated velocity of the eccentric gravity machinery is difficult to be achieved only using gravity energy. In this article, a stable velocity control system applied to eccentric gravity machinery is proposed. The dynamic characteristic of eccentric gravity machinery is analyzed and its mathematical model is established, which is used to design the controller. A stable running velocity of the eccentric gravity machinery can be operated by the controlled servomotor. Due to disturbances being periodic, repetitive controller is installed to velocity control loop. The stability performance and control performance of the repetitive control system are discussed. The iterative algorithm of the repetitive control is executed by a digital signal processor TI TMS320C32 floating-point processor. Simulated and experimental results are reported to verify the performance of the proposed eccentric gravity machinery control system.


2019 ◽  
Vol 9 (22) ◽  
pp. 4958 ◽  
Author(s):  
Lichuan Zhang ◽  
Lu Liu ◽  
Shuo Zhang ◽  
Sheng Cao

The application of Autonomous Underwater Vehicle (AUV) is expanding rapidly, which drives the urgent need of its autonomy improvement. Motion control system is one of the keys to improve the control and decision-making ability of AUVs. In this paper, a saturation based nonlinear fractional-order PD (FOPD) controller is proposed for AUV motion control. The proposed controller is can achieve better dynamic performance as well as robustness compared with traditional PID type controller. It also has the advantages of simple structure, easy adjustment and easy implementation. The stability of the AUV motion control system with the proposed controller is analyzed through Lyapunov method. Moreover, the controlled performance can also be adjusted to satisfy different control requirements. The outperformed dynamic control performance of AUV yaw and depth systems with the proposed controller is shown by the set-point regulation and trajectory tracking simulation examples.


Sign in / Sign up

Export Citation Format

Share Document