Research on the Stability Motion Control Method of Underwater Vehicle Driven by Data

Author(s):  
Cheng Peng
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaokun Leng ◽  
Songhao Piao ◽  
Lin Chang ◽  
Zhicheng He ◽  
Zheng Zhu

Biped robot research has always been a research focus in the field of robot research. Among them, the motion control system, as the core content of the biped robot research, directly determines the stability of the robot walking. Traditional biped robot control methods suffer from low model accuracy, poor dynamic characteristics of motion controllers, and poor motion robustness. In order to improve the walking robustness of the biped robot, this paper solves the problem from three aspects: planning method, mathematical model, and control method, forming a robot motion control framework based on the whole-body dynamics model and quadratic planning. The robot uses divergent component of motion for trajectory planning and introduces the friction cone contact model into the control frame to improve the accuracy of the model. A complete constraint equation system can ensure that the solution of the controller meets the dynamic characteristics of the biped robot. An optimal controller is designed based on the control framework, and starting from the Lyapunov function, the convergence of the optimal controller is proved. Finally, the experimental results show that the method is robust and has certain anti-interference ability.


2019 ◽  
Vol 9 (22) ◽  
pp. 4958 ◽  
Author(s):  
Lichuan Zhang ◽  
Lu Liu ◽  
Shuo Zhang ◽  
Sheng Cao

The application of Autonomous Underwater Vehicle (AUV) is expanding rapidly, which drives the urgent need of its autonomy improvement. Motion control system is one of the keys to improve the control and decision-making ability of AUVs. In this paper, a saturation based nonlinear fractional-order PD (FOPD) controller is proposed for AUV motion control. The proposed controller is can achieve better dynamic performance as well as robustness compared with traditional PID type controller. It also has the advantages of simple structure, easy adjustment and easy implementation. The stability of the AUV motion control system with the proposed controller is analyzed through Lyapunov method. Moreover, the controlled performance can also be adjusted to satisfy different control requirements. The outperformed dynamic control performance of AUV yaw and depth systems with the proposed controller is shown by the set-point regulation and trajectory tracking simulation examples.


2014 ◽  
Vol 701-702 ◽  
pp. 704-710 ◽  
Author(s):  
Viacheslav Pshikhopov ◽  
Yuriy Chernukhin ◽  
Viktor Guzik ◽  
Mikhail Medvedev ◽  
Boris Gurenko ◽  
...  

This paper introduces the implementation of intelligent motion control and planning for autonomous underwater vehicle (AUV). Previously developed control system features intelligent motion control and planning subsystem, based on artificial neural networks. It allows detecting and avoiding moving obstacles in front of the AUV. The motion control subsystem uses position-trajectory control method to position AUV, move from point to point and along given path with given speed. Control system was tested in the multi-module simulation complex. Simulation showed good results – AUV successfully achieved given goals avoiding collisions not only with static obstacles, but also with mobile ones. That allows using the proposed control system for the groups of vehicles. Besides simulation, control system was implemented in hardware. AUV prototype passed tests in Azov Sea and proved its efficiency.


2013 ◽  
Vol 446-447 ◽  
pp. 1183-1187
Author(s):  
Jian Guo Wang ◽  
Gang Yi Hu ◽  
Chun Meng Jiang

Up to now, some technologies of neural networks are developed to solve the non-linearity of research objects and the adaptive control is implemented in many engineering fields, and some good results are achieved. Though the learning mechanism of neural networks is really unknowable, the importance of study ratio is widely realized, and some methods on modification of study ratio are provided. Improving the stability and increasing the convergent rate of networks by defining a good form of study ratio is the main target. A new algorithm named least disturbance BP algorithm is proposed to calculate the ratio online according to the output errors, the weights of network and the input values. The algorithm is applied to the control of an underwater vehicle. The good performance of the algorithm and the controller is demonstrated by the experimental results.


1994 ◽  
Vol 6 (2) ◽  
pp. 175-182
Author(s):  
Zaiquan Sheng ◽  
◽  
Kazuo Yamafuji

In this paper, the dynamic characteristics of a human riding a unicycle are first analyzed by observation.: Based on observation and analysis, we discovered that the rider's body, thighs and shanks create two closed link loops; and this special mechanism plays an important role in the stability of the unicycle. We then developed a new model with two closed link mechanisms and one turntable to emulate a human riding a unicycle by a robot. Considering the nonholonomic constraint between the wheel and ground and applying recently developed general method to compute the multi-closed link mechanisms' dynamic motion, we obtained the dynamic equations of motion for this new model. Using these equations, simulation is conducted under the proposed control method. The simulation result indicates that both longitudinal and lateral stability of a human riding a unicycle can be satisfactorily emulated by the new model.


Author(s):  
Beomyeol Yu ◽  
Hyemin Mo ◽  
Seungkeun Kim ◽  
Jong-Hyon Hwang ◽  
Jeong-Hoon Park ◽  
...  

This study describes the depth and straight motion control performance depending on control surface combinations of a supercavitating underwater vehicle. When an underwater vehicle experiences supercavitation, friction resistance can be minimized, thus achieving the effect of super-high-speed driving. Six degrees of freedom modeling of the underwater vehicle are performed and the guidance and control loops are designed with not only a cavitator and an elevator, but also a rudder and a differential elevator to improve the stability of the roll and yaw axis. The control performance based on the combination of control surfaces is analyzed by the root-mean-square error for keeping depth and straight motion.


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 109
Author(s):  
Baoju Wu ◽  
Xiaowei Han ◽  
Nanmu Hui

Autonomous underwater vehicle is an effective tool for humans to explore the ocean. It can be used for the monitoring of underwater structures and facilities, which puts forward more accurate and stable requirements for the system operation of the autonomous underwater vehicle. This paper studies the system and structural design, including the parameter identification design and control system design, of a novel autonomous underwater vehicle called “Arctic AUV”. The dynamic mathematical model of the “Arctic AUV” was established, and the system parameter identification method based on the multi-sensor least squares centralized fusion algorithm was proposed. The simplification of the mathematical model of the robot was theoretically derived, and the online parameter identification and motion control were combined, so that the robot could cope with the influence of the arctic water velocity and external turbulence. Based on the hybrid control scheme of adaptive PID and predictive control, the accurate motion control of the “Arctic AUV” was realized. A prototype of “Arctic AUV” was developed, and system parameter identification experiments were carried out in indoor pool water. Hybrid adaptive and predictive control experiments were also carried out. The validity of the parametric design method in this paper was verified, and by comparative experiment, the effect of the control method proposed in this paper was better than the traditional method.


2021 ◽  
Author(s):  
Haifei Zhang ◽  
Xu Jian ◽  
Liting Lei ◽  
Fang Wu ◽  
Lanmei Qian ◽  
...  

Abstract Focusing on the motion control problem of two link manipulator, a manipulator control approach based on deep deterministic policy gradient with parameter noise is proposed. Firstly, the manipulator simulation environment is built. And then the three deep reinforcement learning models named the deep deterministic policy gradient (DDPG), asynchronous advantage actor-critical (A3C) and distributed proximal policy optimization (DPPO) are established for training according to the target setting, state variables and reward & punishment mechanism of the environment model. Finally the motion control of two link manipulator is realized. After comparing and analyzing the three models, the DDPG approach based on parameter noise is proposed for further research to improve its applicability, so as to cut down the debugging time of the manipulator model and reach the goal smoothly. The experimental results indicate that the DDPG approach based on parameter noise can control the motion of two link manipulator effectively. The convergence speed of the control model is significantly promoted and the stability after convergence is improved. In comparison with the traditional control approach, the DDPG control approach based on parameter noise has higher efficiency and stronger applicability.


2013 ◽  
Vol 341-342 ◽  
pp. 906-912 ◽  
Author(s):  
Lei Zhang ◽  
Da Peng Jiang ◽  
Shu Ling Huang ◽  
Jin Xin Zhao

A switch function is presented to smooth control instructions and avoid system vibration during switch operating underwater vehicles with hybrid actuators. And a Modified S-plane Controller (MSC) is proposed by analyzing underwater vehicles dynamics and taking static force and coupling effects between the longitude velocity and other dimensions into account. Besides the advantages of S controller such as simple structure, MSC can solve the motion control of underwater vehicle at high speed which is difficult to control with S-plane controller. The stability of MSC is analyzed with Lyapunov function. Finally, MSC is applied to the motion control of an autonomous underwater vehicle controlled by rudders and thrusters. The feasibility of MSC is demonstrated by the results of velocity control, yaw control and depth control tests.


Sign in / Sign up

Export Citation Format

Share Document